b a x b a y 0 0 0 0 1 0 0 1 0 0 1 1 0 1 2 0 1 0 0 1 1 3 0 1 1 1 0 1 4 1 0 0 0 1 0 5 1 0 1 0 1 0 6 1 1 0 0 0 0 7 1 1 1 1 1 0 b a x b 0 0 0 0 1 1 0 0 1 1 2 0 1 0 0 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 b a x a 0 0 0 0 0 1 0 0 1 0 2 0 1 0 1 3 0 1 1 0 4 1 0 0 1 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 b a x y 0 0 0 0 0 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 0 b a x b 0 0 0 0 1 1 0 0 1 1 3 0 1 1 1 7 1 1 1 1 b a x a 2 0 1 0 1 4 1 0 0 1 5 1 0 1 1 7 1 1 1 1 b a x y 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 b a x b Gruppe 0: 0 0 0 0 1 Gruppe 1: 1 0 0 1 1 Gruppe 2: 3 0 1 1 1 Gruppe 3: 7 1 1 1 1 b a x a Gruppe 1: 2 0 1 0 1 4 1 0 0 1 Gruppe 2: 5 1 0 1 1 Gruppe 3: 7 1 1 1 1 b a x y Gruppe 1: 1 0 0 1 1 2 0 1 0 1 Gruppe 2: 3 0 1 1 1 b a x b Gruppe 0: 0 0 0 0 1 Gruppe 1: 1 0 0 1 1 Gruppe 2: 3 0 1 1 1 Gruppe 3: 7 1 1 1 1 0;1 0 0 - 1;3 0 - 1 3;7 - 1 1 Minimale Restueberdeckung 0 1 3 7 0;1 * * 1;3 * * 3;7 * * 0 1 3 7 0;1 * * 3;7 * * b <= (not b and not a) or (a and x) b a x a Gruppe 1: 2 0 1 0 1 4 1 0 0 1 Gruppe 2: 5 1 0 1 1 Gruppe 3: 7 1 1 1 1 2 0 1 1 4;5 1 0 - 5;7 1 - 1 Minimale Restueberdeckung 2 4 5 7 2 * 4;5 * * 5;7 * * a <= (not b and a and x) or (b and not a) or (b and x) b a x y Gruppe 1: 1 0 0 1 1 2 0 1 0 1 Gruppe 2: 3 0 1 1 1 0;3 0 - 1 2;3 0 1 - Minimale Restueberdeckung 0 2 3 0;3 * * 2;3 * * y <= (not b and x) or (not b and a) b <= (not b and not a) or (a and x) a <= (not b and a and x) or (b and not a) or (b and x) y <= (not b and x) or (not b and a)