Re: Alte Quine Mc Cluskeys und Übungen.

 0 0 0 0 0    0
 1 0 0 0 1    0
 2 0 0 1 0    1
 3 0 0 1 1    1
 4 0 1 0 0    1
 5 0 1 0 1    0
 6 0 1 1 0    1
 7 0 1 1 1    0
 8 1 0 0 0    0
 9 1 0 0 1    0
10 1 0 1 0    0
11 1 0 1 1    1
12 1 1 0 0    0
13 1 1 0 1    1
14 1 1 1 0    1
15 1 1 1 1    1

 2 0 0 1 0    1
 3 0 0 1 1    1
 4 0 1 0 0    1
 6 0 1 1 0    1
11 1 0 1 1    1
13 1 1 0 1    1
14 1 1 1 0    1
15 1 1 1 1    1

Gruppe 1
 2 0 0 1 0    1
 4 0 1 0 0    1
Gruppe 2
 3 0 0 1 1    1
 6 0 1 1 0    1
 Gruppe 3
11 1 0 1 1    1
13 1 1 0 1    1
14 1 1 1 0    1
Gruppe 4
15 1 1 1 1    1

2;3     0 0 1 -
2;6     0 - 1 0
4;6     0 1 - 0
3;11    - 0 1 1
6;14    - 1 1 0
11;15   1 - 1 1
13;15   1 1 - 1
14;15   1 1 1 -

2;3     0 0 1 -
14;15   1 1 1 -
4;6     0 1 - 0
13;15   1 1 - 1
2;6     0 - 1 0
11;15   1 - 1 1
3;11    - 0 1 1
6;14    - 1 1 0

        2   3   4   6   11  13  14  15
2;3     *   *
14;15                           *   *
4;6             *   *
13;15                       *       *
2;6     *           *
11;15                   *           *
3;11        *           *
6;14                *           *


        2   3   4   6   11  13  14  15
2;3     *   *
14;15                           *   *
4;6             *   *
13;15                       *       *
11;15                   *           *


2;3     0 0 1 -
14;15   1 1 1 -
4;6     0 1 - 0
13;15   1 1 - 1
11;15   1 - 1 1

(not x3 and not not x2 and x1) or (x3 and x2 and x1) or (not x3 and x2 and not x0) or (x3 and x2 and x0) or (x3 and x1 and x0)

 0 0 0 0 0    0
 1 0 0 0 1    1
 2 0 0 1 0    1
 3 0 0 1 1    0
 4 0 1 0 0    0
 5 0 1 0 1    0
 6 0 1 1 0    1
 7 0 1 1 1    0
 8 1 0 0 0    1
 9 1 0 0 1    0
10 1 0 1 0    1
11 1 0 1 1    0
12 1 1 0 0    0
13 1 1 0 1    0
14 1 1 1 0    1
15 1 1 1 1    1



 1 0 0 0 1    1
 2 0 0 1 0    1
 6 0 1 1 0    1
 8 1 0 0 0    1
10 1 0 1 0    1
14 1 1 1 0    1
15 1 1 1 1    1

Gruppe 1
 1 0 0 0 1    1
 2 0 0 1 0    1
 8 1 0 0 0    1
Gruppe 2
 6 0 1 1 0    1
10 1 0 1 0    1
Gruppe 3
14 1 1 1 0    1
Gruppe 4:
15 1 1 1 1    1

1           0 0 0 1
2;6         0 - 1 0
2;10        - 0 1 0
8;10        1 0 - 0
6;14        - 1 1 0
10;14       1 - 1 0
14;15       1 1 1 -

1           0 0 0 1
8;10        1 0 - 0
2;6         0 - 1 0
10;14       1 - 1 0
2;10        - 0 1 0
6;14        - 1 1 0
14;15       1 1 1 -

2;6;10;14   - - 1 0
2;10;6;14   - - 1 0

1           0 0 0 1
8;10        1 0 - 0
14;15       1 1 1 -
2;10;6;14   - - 1 0

            1   2   6   8   10  14  15
1           *
8;10                    *   *
14;15                           *   *
2;10;6;14       *   *       *   *

 0 0 0 0 0    0
 1 0 0 0 1    1
 2 0 0 1 0    1
 3 0 0 1 1    0
 4 0 1 0 0    0
 5 0 1 0 1    0
 6 0 1 1 0    0
 7 0 1 1 1    0
 8 1 0 0 0    1
 9 1 0 0 1    0
10 1 0 1 0    0
11 1 0 1 1    0
12 1 1 0 0    1
13 1 1 0 1    0
14 1 1 1 0    0
15 1 1 1 1    1


 1 0 0 0 1    1
 2 0 0 1 0    1
 8 1 0 0 0    1
12 1 1 0 0    1
15 1 1 1 1    1

Gruppe 1:
 1 0 0 0 1    1
 2 0 0 1 0    1
 8 1 0 0 0    1
Gruppe 2:
12 1 1 0 0    1
Gruppe 4:
15 1 1 1 1    1

1           0 0 0 1
2           0 0 1 0
8;12        1 - 0 0
15          1 1 1 1

y = (not x3 and not x2 and not x1 and x0) or (not x3 and not x2 and x1 and not x0) or (x3 and not x1 and not x0) or (x3 and x2 and x1 and x0)

 0 0 0 0 0    0
 1 0 0 0 1    1
 2 0 0 1 0    0
 3 0 0 1 1    0
 4 0 1 0 0    1
 5 0 1 0 1    0
 6 0 1 1 0    0
 7 0 1 1 1    0
 8 1 0 0 0    0
 9 1 0 0 1    0
10 1 0 1 0    1
11 1 0 1 1    0
12 1 1 0 0    1
13 1 1 0 1    0
14 1 1 1 0    0
15 1 1 1 1    1

 1 0 0 0 1    1
 4 0 1 0 0    1
10 1 0 1 0    1
12 1 1 0 0    1
15 1 1 1 1    1

Gruppe 1
 1 0 0 0 1    1
 4 0 1 0 0    1
Gruppe 2
10 1 0 1 0    1
12 1 1 0 0    1
Gruppe 4
15 1 1 1 1    1

10      1 0 1 0
15      1 1 1 1
1       0 0 0 1
4;12    - 1 0 0

x = (d and not c and b and a) or (d and c and b and a) or (not d and not c and not b and a) or (c and not b and not a)

 0 0 0 0 0    1
 1 0 0 0 1    0
 2 0 0 1 0    1
 3 0 0 1 1    1
 4 0 1 0 0    0
 5 0 1 0 1    0
 6 0 1 1 0    0
 7 0 1 1 1    1
 8 1 0 0 0    0
 9 1 0 0 1    1
10 1 0 1 0    0
11 1 0 1 1    1
12 1 1 0 0    1
13 1 1 0 1    1
14 1 1 1 0    0
15 1 1 1 1    0


 0 0 0 0 0    1
 2 0 0 1 0    1
 3 0 0 1 1    1
 7 0 1 1 1    1
 9 1 0 0 1    1
11 1 0 1 1    1
12 1 1 0 0    1
13 1 1 0 1    1

Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 2 0 0 1 0    1
Gruppe 2
 3 0 0 1 1    1
 9 1 0 0 1    1
12 1 1 0 0    1
Gruppe 2
 7 0 1 1 1    1
11 1 0 1 1    1
13 1 1 0 1    1

0;2         0 0 - 0
2;3         0 0 1 -
3;7         0 - 1 1
3;11        - 0 1 1
9;11        1 0 - 1
9;13        1 - 0 1
12;13       1 1 0 -

3;11        - 0 1 1
9;13        1 - 0 1
3;7         0 - 1 1
9;11        1 0 - 1
0;2         0 0 - 0
2;3         0 0 1 -
12;13       1 1 0 -

            9   2   3       12  7   11  13  0
3;11                *               *
9;13        *                           *
3;7                 *           *
9;11        *                       *
0;2             *                           *
2;3             *   *
12;13                       *           *



            9   2   3       12  7   11  13  0
3;11                *               *
9;13        *                           *
3;7                 *           *
0;2             *                           *
12;13                       *           *

 0 0 0 0 0    0
 1 0 0 0 1    1
 2 0 0 1 0    0
 3 0 0 1 1    0
 4 0 1 0 0    0
 5 0 1 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
11 1 0 1 1    1
12 1 1 0 0    0
13 1 1 0 1    1
14 1 1 1 0    0
15 1 1 1 1    0

 1 0 0 0 1    1
 5 0 1 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
11 1 0 1 1    1
13 1 1 0 1    1

Gruppe 1
 1 0 0 0 1    1
 8 1 0 0 0    1
Gruppe 2
 5 0 1 0 1    1
 6 0 1 1 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
Gruppe 3
 7 0 1 1 1    1
11 1 0 1 1    1
13 1 1 0 1    1

1;5     0 - 0 1
1;9     - 0 0 1
8;9     1 0 0 -
8;10    1 0 - 0
5;7     0 1 - 1
5;13    - 1 0 1
6;7     0 1 1 -
9;11    1 0 - 1
9;13    1 - 0 1
10:11   1 0 1 -


6;7     0 1 1 -
10:11   1 0 1 -
8;9     1 0 0 -
9;11    1 0 - 1
5;7     0 1 - 1
8;10    1 0 - 0
9;13    1 - 0 1
1;5     0 - 0 1
1;9     - 0 0 1
5;13    - 1 0 1

6;7             0 1 1 -
10;11;8;9       1 0 - -
5;7             0 1 - 1
9;11;8;10       1 0 - -
9;13;1;5        - - 0 1
1;9;5;13        - - 0 1

6;7             0 1 1 -
5;7             0 1 - 1
9;11;8;10       1 0 - -
1;9;5;13        - - 0 1

            1   5   6   7   8   9   10  11  13
6;7                 *   *
5;7             *       *
9;11;8;10                   *   *   *   *
1;9;5;13    *   *               *           *


            1   5   6   7   8   9   10  11  13
6;7                 *   *
9;11;8;10                   *   *   *   *
1;9;5;13    *   *               *           *

 0 0 0 0 0    1
 1 0 0 0 1    1
 2 0 0 1 0    1
 3 0 0 1 1    0
 4 0 1 0 0    0
 5 0 1 0 1    1
 6 0 1 1 0    0
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    0
10 1 0 1 0    1
11 1 0 1 1    1
12 1 1 0 0    0
13 1 1 0 1    0
14 1 1 1 0    1
15 1 1 1 1    1



 0 0 0 0 0    1
 1 0 0 0 1    1
 2 0 0 1 0    1
 5 0 1 0 1    1
 7 0 1 1 1    1
 8 1 0 0 0    1
10 1 0 1 0    1
11 1 0 1 1    1
14 1 1 1 0    1
15 1 1 1 1    1

Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 1 0 0 0 1    1
 2 0 0 1 0    1
 8 1 0 0 0    1
Gruppe 2
 5 0 1 0 1    1
10 1 0 1 0    1
Gruppe 3
 7 0 1 1 1    1
11 1 0 1 1    1
14 1 1 1 0    1
Gruppe 4
15 1 1 1 1    1


0;1         0 0 0 -
0;2         0 0 - 0
0;8         - 0 0 0
1;5         0 - 0 1
2;10        - 0 1 0
8;10        1 0 - 0
5;7         0 1 - 1
10;11       1 0 1 -
10;14       1 - 1 0
7;15        - 1 1 1
11;15       1 - 1 1
14;15       1 1 1 -




7;15        - 1 1 1
0;8         - 0 0 0
2;10        - 0 1 0
1;5         0 - 0 1
11;15       1 - 1 1
10;14       1 - 1 0
8;10        1 0 - 0
5;7         0 1 - 1
0;2         0 0 - 0
10;11       1 0 1 -
14;15       1 1 1 -
0;1         0 0 0 -


7;15        - 1 1 1
0;8         - 0 0 0
2;10        - 0 1 0

1;5         0 - 0 1
11;15       1 - 1 1
10;14       1 - 1 0

11;15;10;14 1 - 1 -

0;2         0 0 - 0
8;10        1 0 - 0
5;7         0 1 - 1

0;2;8;10    - 0 - 0

0;1         0 0 0 -
10;11       1 0 1 -
14;15       1 1 1 -

                0   1   2   5   7   8   10  11  14  15
7;15                            *                   *
0;8             *                   *
2;10                    *               *
1;5                 *       *
11;15;10;14                             *   *   *   *
0;2;8;10        *       *           *   *
5;7                         *   *
0;1             *   *
10;11                                   *           *
14;15                                           *   *


                0   1   2   5   7   8   10  11  14  15
7;15                            *                   *
0;8             *                   *
2;10                    *               *
1;5                 *       *
11;15;10;14                             *   *   *   *

 0 0 0 0 0    0
 1 0 0 0 1    0
 2 0 0 1 0    1
 3 0 0 1 1    1
 4 0 1 0 0    1
 5 0 1 0 1    1
 6 0 1 1 0    0
 7 0 1 1 1    0
 8 1 0 0 0    1
 9 1 0 0 1    0
10 1 0 1 0    0
11 1 0 1 1    0
12 1 1 0 0    1
13 1 1 0 1    1
14 1 1 1 0    1
15 1 1 1 1    0


 2 0 0 1 0    1
 3 0 0 1 1    1
 4 0 1 0 0    1
 5 0 1 0 1    1
 8 1 0 0 0    1
12 1 1 0 0    1
13 1 1 0 1    1
14 1 1 1 0    1

Gruppe 1
 2 0 0 1 0    1
 4 0 1 0 0    1
 8 1 0 0 0    1
Gruppe 2
 3 0 0 1 1    1
 5 0 1 0 1    1
12 1 1 0 0    1
Gruppe 3
13 1 1 0 1    1
14 1 1 1 0    1

2;3         0 0 1 -
4;5         0 1 0 -
4;12        - 1 0 0
8;12        1 - 0 0
5;13        - 1 0 1
12;14       1 1 - 0


4;12        - 1 0 0
5;13        - 1 0 1
8;12        1 - 0 0
12;14       1 1 - 0
2;3         0 0 1 -
4;5         0 1 0 -

4;12;5;13   - 1 0 -
8;12        1 - 0 0
12;14       1 1 - 0
2;3         0 0 1 -
4;5         0 1 0 -

            2   3   4   5   8   12  13  14
4;12;5;13           *   *       *   *
8;12                        *   *
12;14                           *       *
2;3         *   *
4;5                 *   *


            2   3   4   5   8   12  13  14
4;12;5;13           *   *       *   *
8;12                        *   *
12;14                           *       *
2;3         *   *

 0 0 0 0 0    0
 1 0 0 0 1    1
 2 0 0 1 0    0
 3 0 0 1 1    1
 4 0 1 0 0    1
 5 0 1 0 1    1
 6 0 1 1 0    0
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
11 1 0 1 1    0
12 1 1 0 0    1
13 1 1 0 1    1
14 1 1 1 0    0
15 1 1 1 1    0


 1 0 0 0 1    1
 3 0 0 1 1    1
 4 0 1 0 0    1
 5 0 1 0 1    1
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
12 1 1 0 0    1
13 1 1 0 1    1

Gruppe 1
 1 0 0 0 1    1
 4 0 1 0 0    1
 8 1 0 0 0    1
Gruppe 2
 3 0 0 1 1    1
 9 1 0 0 1    1
10 1 0 1 0    1
12 1 1 0 0    1
Gruppe 3
 5 0 1 0 1    1
 7 0 1 1 1    1
13 1 1 0 1    1

1;3         0 0 - 1
1;9         - 0 0 1
4;12        - 1 0 0
8;9         1 0 0 -
8;10        1 0 - 0
8;13        1 - 0 0
3;7         0 - 1 1
9;13        1 - 0 1
12;13       1 1 0 -



8;9         1 0 0 -
12;13       1 1 0 -
8;10        1 0 - 0
1;3         0 0 - 1
8;13        1 - 0 0
3;7         0 - 1 1
9;13        1 - 0 1
1;9         - 0 0 1
4;12        - 1 0 0


Gruppe 1
8;9         1 0 0 -
Gruppe 2
12;13       1 1 0 -

8;9;12;13       1 - 0 -

Gruppe 1
8;10        1 0 - 0
1;3         0 0 - 1

Grupp 1
8;13        1 - 0 0
Gruppe 2
9;13        1 - 0 1
3;7         0 - 1 1

8;13;9;13   1 - 0 -

Gruppe 1
1;9         - 0 0 1
4;12        - 1 0 0

8;9;12;13   1 - 0 -
8;10        1 0 - 0
1;3         0 0 - 1
3;7         0 - 1 1
1;9         - 0 0 1
4;12        - 1 0 0
5           0 1 0 1


            1   3   4   5   7   8   9   10  11  12  13
8;9;12;13                       *   *           *   *
8;10                            *       *
1;3         *   *
3;7             *           *
1;19        *                       *
4;12                *                           *
5                       *


            1   3   4   5   7   8   9   10  11  12  13
8;9;12;13                       *   *           *   *
8;10                            *       *
3;7             *           *
1;19        *                       *
4;12                *                           *
5                       *

 0 0 0 0 0    1
 1 0 0 0 1    0
 2 0 0 1 0    1
 3 0 0 1 1    0
 4 0 1 0 0    1
 5 0 1 0 1    0
 6 0 1 1 0    0
 7 0 1 1 1    1
 8 1 0 0 0    0
 9 1 0 0 1    0
10 1 0 1 0    1
11 1 0 1 1    0
12 1 1 0 0    0
13 1 1 0 1    1
14 1 1 1 0    0
15 1 1 1 1    1


 0 0 0 0 0    1
 2 0 0 1 0    1
 4 0 1 0 0    1
 7 0 1 1 1    1
10 1 0 1 0    1
13 1 1 0 1    1
15 1 1 1 1    1


Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 2 0 0 1 0    1
 4 0 1 0 0    1
Gruppe 2
10 1 0 1 0    1
Gruppe 3
 7 0 1 1 1    1
13 1 1 0 1    1
Gruppe 4
15 1 1 1 1    1

0;2         0 0 - 0
0;4         0 - 0 0
2;10        - 0 1 0
7;15        - 1 1 1
13;15       1 1 - 1

13;15       1 1 - 1
0;2         0 0 - 0
0;4         0 - 0 0
2;10        - 0 1 0
7;15        - 1 1 1

            0   2   4   7   10  13  15
13;15                           *   *
0;2         *   *
0;4         *       *
2;10            *           *
7;15                    *           *


            0   2   4   7   10  13  15
13;15                           *   *
0;4         *       *
2;10            *           *
7;15                    *           *

y := (d and c and a) or (not d and not b and not a) or (not c and b and not a) or (c and b and a)

 0 0 0 0 0    1
 1 0 0 0 1    1
 2 0 0 1 0    0
 3 0 0 1 1    0
 4 0 1 0 0    1
 5 0 1 0 1    1
 6 0 1 1 0    0
 7 0 1 1 1    0
 8 1 0 0 0    1
 9 1 0 0 1    0
10 1 0 1 0    1
11 1 0 1 1    1
12 1 1 0 0    1
13 1 1 0 1    1
14 1 1 1 0    0
15 1 1 1 1    0


 0 0 0 0 0    1
 1 0 0 0 1    1
 4 0 1 0 0    1
 5 0 1 0 1    1
 8 1 0 0 0    1
10 1 0 1 0    1
11 1 0 1 1    1
12 1 1 0 0    1
13 1 1 0 1    1


Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 1 0 0 0 1    1
 4 0 1 0 0    1
 8 1 0 0 0    1
Gruppe 2
 5 0 1 0 1    1
10 1 0 1 0    1
12 1 1 0 0    1
Gruppe 3
11 1 0 1 1    1
13 1 1 0 1    1

0;1     0 0 0 -
0;4     0 - 0 0
0;8     - 0 0 0
1;5     0 - 0 1
8;10    1 0 - 0
8;12    1 - 0 0
5;13    - 1 0 1
10:11   1 0 1 -
12;13   1 1 0 -


0;8     - 0 0 0
5;13    - 1 0 1
8;12    1 - 0 0
1;5     0 - 0 1
0;4     0 - 0 0
8;10    1 0 - 0
0;1     0 0 0 -
10:11   1 0 1 -
12;13   1 1 0 -



0;8     - 0 0 0
5;13    - 1 0 1

Gruppe 0
0;4     0 - 0 0
Gruppe 1
8;12    1 - 0 0
1;5     0 - 0 1

8;10    1 0 - 0

Gruppe 0
0;1     0 0 0 -

Gruppe 2
10:11   1 0 1 -
12;13   1 1 0 -



0;8     - 0 0 0
5;13    - 1 0 1

Gruppe 0
0;4     0 - 0 0
Gruppe 1
8;12    1 - 0 0
1;5     0 - 0 1

0;4;8;12        - - 0 0
0;4;1;5         0 - 0 -

8;10    1 0 - 0

Gruppe 0
0;1     0 0 0 -

Gruppe 2
10:11   1 0 1 -
12;13   1 1 0 -



0;8             - 0 0 0
5;13            - 1 0 1
0;4;8;12        - - 0 0
0;4;1;5         0 - 0 -
8;10            1 0 - 0
0;1             0 0 0 -
10:11           1 0 1 -
12;13           1 1 0 -

y := (not c and not b and not a) or
    (c and not b and a) or
    (not b and not a) or
    (not d and not b) or
    (d and not c and a) or
    (not d and not c and not b) or
    (d and not c and b) or
    (d and c and not b)

            0   1   4   5   8   10  11  12  13
0;8         *               *
5;13                    *                   *
0;4;8;12    *       *       *           *
0;4;1;5     *   *   *   *
8;10                        *   *
0;1         *   *
10;11                           *   *
12;13                                   *   *


            0   1   4   5   8   10  11  12  13
5;13                    *                   *
0;4;8;12    *       *       *           *
0;4;1;5     *   *   *   *
8;10                        *   *
10;11                           *   *



5;13            - 1 0 1
0;4;8;12        - - 0 0
0;4;1;5         0 - 0 -
8;10            1 0 - 0
10:11           1 0 1 -

y := (c and not b and a) or (not b and not a) or (not d and not b) or (d and not c and not a) or (d and not c and b)

 0 0 0 0 0    1
 1 0 0 0 1    0
 2 0 0 1 0    0
 3 0 0 1 1    1
 4 0 1 0 0    0
 5 0 1 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
11 1 0 1 1    1
12 1 1 0 0    0
13 1 1 0 1    0
14 1 1 1 0    1
15 1 1 1 1    1


 0 0 0 0 0    1
 3 0 0 1 1    1
 5 0 1 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
11 1 0 1 1    1
14 1 1 1 0    1
15 1 1 1 1    1


Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 8 1 0 0 0    1
Gruppe 2
 3 0 0 1 1    1
 5 0 1 0 1    1
 6 0 1 1 0    1
 9 1 0 0 1    1
10 1 0 1 0    1
Gruppe 3
 7 0 1 1 1    1
11 1 0 1 1    1
14 1 1 1 0    1
Gruppe 4
15 1 1 1 1    1

0;8         - 0 0 0
8;9         1 0 0 -
8;10        1 0 - 0
3;7         0 - 1 1
5;7         0 1 - 1
6;7         0 1 1 -
10;11       1 0 1 -
10;14       1 - 1 0
9;11        1 0 - 1
7;15        - 1 1 1
11;15       1 - 1 1
14;15       1 1 1 -



0;8         - 0 0 0
7;15        - 1 1 1
3;7         0 - 1 1
10;14       1 - 1 0
11;15       1 - 1 1
5;7         0 1 - 1
9;11        1 0 - 1
8;10        1 0 - 0
8;9         1 0 0 -
6;7         0 1 1 -
10;11       1 0 1 -
14;15       1 1 1 -

Gruppe 0
0;8         - 0 0 0
Gruppe 3
7;15        - 1 1 1

Gruppe 2
3;7         0 - 1 1
10;14       1 - 1 0

Gruppe 3
11;15       1 - 1 1
Gruppe 1
8;10        1 0 - 0
Gruppe 2
5;7         0 1 - 1
9;11        1 0 - 1

Gruppe 1
8;9         1 0 0 -
Gruppe 2
6;7         0 1 1 -
10;11       1 0 1 -
Gruppe 3
14;15       1 1 1 -



Gruppe 0
0;8         - 0 0 0
Gruppe 3
7;15        - 1 1 1

Gruppe 2
3;7         0 - 1 1
10;14       1 - 1 0
Gruppe 3
11;15       1 - 1 1

3;7;11;15       - - 1 1
10;14;11;15     1 - 1 -

Gruppe 1
8;10        1 0 - 0
Gruppe 2
5;7         0 1 - 1
9;11        1 0 - 1

5;7         0 1 - 1
8;10;9;11   1 0 - -


Gruppe 1
8;9         1 0 0 -
Gruppe 2
6;7         0 1 1 -
10;11       1 0 1 -
Gruppe 3
14;15       1 1 1 -

8;9;10;11   1 0 - -
6;7;14;15   - 1 1 -
10;11;14;15 1 - 1 -




0;8         - 0 0 0
7;15        - 1 1 1
3;7;11;15   - - 1 1
10;14;11;15 1 - 1 -
5;7         0 1 - 1
8;10;9;11   1 0 - -
8;9;10;11   1 0 - -
6;7;14;15   - 1 1 -
10;11;14;15 1 - 1 -

            0   3   5   6   7   8   9   10  11  14  15
0;8         *                   *
7;15                        *                       *
3;7;11;15       *           *               *       *
10;14;11;15                             *   *   *   *
5;7                 *       *
8;10;9;11                       *   *   *   *
6;7;14;15               *   *                   *   *


            0   3   5   6   7   8   9   10  11  14  15
0;8         *                   *
3;7;11;15       *           *               *       *
5;7                 *       *
8;10;9;11                       *   *   *   *
6;7;14;15               *   *                   *   *

y := (not c and not b and not a) or
    (b and ) or
    (not d and b and a) or
    (d and not c) or
    (d and b)

 0 0 0 0 0    1
 1 0 0 0 1    1
 2 0 0 1 0    0
 3 0 0 1 1    0
 4 0 1 0 0    0
 5 0 1 0 1    0
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    0
 9 1 0 0 1    0
10 1 0 1 0    0
11 1 0 1 1    0
12 1 1 0 0    0
13 1 1 0 1    1
14 1 1 1 0    1
15 1 1 1 1    0


 0 0 0 0 0    1
 1 0 0 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
13 1 1 0 1    1
14 1 1 1 0    1

Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 1 0 0 0 1    1
Gruppe 2
 6 0 1 1 0    1
Gruppe 3
 7 0 1 1 1    1
13 1 1 0 1    1
14 1 1 1 0    1

0;1     0 0 0 -
6;7     0 1 1 -
13      1 1 0 1
6;14    - 1 1 0

y := (not d and not c and not b) or (not d and c and b) or (d and c and not b and a) or (c and b and not a)

 0 0 0 0 0    1
 1 0 0 0 1    0
 2 0 0 1 0    0
 3 0 0 1 1    0
 4 0 1 0 0    1
 5 0 1 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    0
 9 1 0 0 1    0
10 1 0 1 0    0
11 1 0 1 1    1
12 1 1 0 0    1
13 1 1 0 1    0
14 1 1 1 0    0
15 1 1 1 1    0


 0 0 0 0 0    1
 4 0 1 0 0    1
 5 0 1 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
11 1 0 1 1    1
12 1 1 0 0    1

Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 4 0 1 0 0    1
Gruppe 2
 5 0 1 0 1    1
 6 0 1 1 0    1
12 1 1 0 0    1
Gruppe 3
 7 0 1 1 1    1
11 1 0 1 1    1

0;4         0 - 0 0
4;5         0 1 0 -
4;6         0 1 - 0
4;12        - 1 0 0
5;7         0 1 - 1
6;7         0 1 1 -
12          1 1 0 0
11          1 0 1 1


4;5         0 1 0 -
6;7         0 1 1 -
5;7         0 1 - 1
4;6         0 1 - 0
0;4         0 - 0 0
4;12        - 1 0 0
12          1 1 0 0
11          1 0 1 1



Gruppe 1
4;5         0 1 0 -
Gruppe 2
6;7         0 1 1 -

4;5;6;7     0 1 - -

Gruppe 1
4;6         0 1 - 0
Gruppe 2
5;7         0 1 - 1
4;6;5;7     0 1 - -


0;4         0 - 0 0
4;12        - 1 0 0
12          1 1 0 0
11          1 0 1 1


Gruppe 1
4;5         0 1 0 -
Gruppe 2
6;7         0 1 1 -

4;5;6;7     0 1 - -

Gruppe 1
4;6         0 1 - 0
Gruppe 2
5;7         0 1 - 1
4;6;5;7     0 1 - -


0;4         0 - 0 0
4;12        - 1 0 0
11          1 0 1 1
4;6;5;7     0 1 - -

            0   4   5   6   7   11  12
0;4         *   *
4;12            *                   *
11                              *
4;5;6;7         *   *   *   *

y := (not d and not b and not a) or (c and not b and not a) or (d and not c and b and a) or (not d and c)

    b a x   b a y
0   0 0 0   0 0 0
1   0 0 1   1 0 0
2   0 1 0   1 0 1
3   0 1 1   0 1 1
4   1 0 0   0 0 0
5   1 0 1   1 1 1
6   1 1 0   0 0 1
7   1 1 1   1 1 0


    b a x   b
0   0 0 0   0
1   0 0 1   1
2   0 1 0   1
3   0 1 1   0
4   1 0 0   0
5   1 0 1   1
6   1 1 0   0
7   1 1 1   1

    b a x   a
0   0 0 0   0
1   0 0 1   0
2   0 1 0   0
3   0 1 1   1
4   1 0 0   0
5   1 0 1   1
6   1 1 0   0
7   1 1 1   1

    b a x   y
0   0 0 0   0
1   0 0 1   0
2   0 1 0   1
3   0 1 1   1
4   1 0 0   0
5   1 0 1   1
6   1 1 0   1
7   1 1 1   0



    b a x   b
1   0 0 1   1
2   0 1 0   1
5   1 0 1   1
7   1 1 1   1

    b a x   a
3   0 1 1   1
5   1 0 1   1
7   1 1 1   1

    b a x   y
2   0 1 0   1
3   0 1 1   1
5   1 0 1   1
6   1 1 0   1



    b a x   b
Gruppe 1
1   0 0 1   1
2   0 1 0   1
Gruppe 2
5   1 0 1   1
Gruppe 3
7   1 1 1   1

    b a x   a
Gruppe 2
3   0 1 1   1
5   1 0 1   1
Gruppe 3
7   1 1 1   1

    b a x   y
Gruppe 1
2   0 1 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1
6   1 1 0   1



    b a x   b
Gruppe 1
1   0 0 1   1
2   0 1 0   1
Gruppe 2
5   1 0 1   1
Gruppe 3
7   1 1 1   1

1;5     - 0 1
2       0 1 0
5;7     1 - 1

b := (not a and x) or (not b and a and not x) or (b and x)

    b a x   a
Gruppe 2
3   0 1 1   1
5   1 0 1   1
Gruppe 3
7   1 1 1   1

3;7     - 1 1
5;7     1 - 1

a := (a and x) or (b and x)


    b a x   y
Gruppe 1
2   0 1 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1
6   1 1 0   1

2;3     0 1 -
5       1 0 1
2;6     - 1 0

y := (not b and a) or (b and not a and x) or (a and not x)

b := (not a and x) or (not b and a and not x) or (b and x)
a := (a and x) or (b and x)
y := (not b and a) or (b and not a and x) or (a and not x)

b := (b and not x) or (not b and a and x) or (b and a and not x)
a := (b and not a and x) or (b and not a and not x) or (not b and a and not x) or (b and a and x)
y := (not a and not x) or (not a and b) or (b and x)

Wahrheitstabelle

        b a x   b a y
0       0 0 0   0 0 1
1       0 0 1   0 0 0
2       0 1 0   0 1 0
3       0 1 1   1 0 0
4       1 0 0   1 1 1
5       1 0 1   0 1 1
6       1 1 0   1 0 0
7       1 1 1   0 1 1

        b a x   b a y
0       0 0 0   0 0 1
1       0 0 1   0 1 0
2       0 1 0   1 1 1
3       0 1 1   0 0 1
4       1 0 0   1 1 0
5       1 0 1   1 0 0
6       1 1 0   1 0 1
7       1 1 1   0 1 0


        b a x   b
0       0 0 0   0
1       0 0 1   0
2       0 1 0   1
3       0 1 1   0
4       1 0 0   1
5       1 0 1   1
6       1 1 0   1
7       1 1 1   0

        b a x   a
0       0 0 0   0
1       0 0 1   1
2       0 1 0   1
3       0 1 1   0
4       1 0 0   1
5       1 0 1   0
6       1 1 0   0
7       1 1 1   1

        b a x   y
0       0 0 0   1
1       0 0 1   0
2       0 1 0   1
3       0 1 1   1
4       1 0 0   0
5       1 0 1   0
6       1 1 0   1
7       1 1 1   0




        b a x   b
2       0 1 0   1
4       1 0 0   1
5       1 0 1   1
6       1 1 0   1

        b a x   a
1       0 0 1   1
2       0 1 0   1
4       1 0 0   1
7       1 1 1   1

        b a x   y
0       0 0 0   1
2       0 1 0   1
3       0 1 1   1
6       1 1 0   1




        b a x   b
Gruppe 1
2       0 1 0   1
4       1 0 0   1
Gruppe 2
5       1 0 1   1
6       1 1 0   1

        b a x   a
Gruppe 1
1       0 0 1   1
2       0 1 0   1
4       1 0 0   1
Gruppe 2
7       1 1 1   1

        b a x   y
Gruppe 0
0       0 0 0   1
Gruppe 1
2       0 1 0   1
Gruppe 2
3       0 1 1   1
6       1 1 0   1




        b a x   b
Gruppe 1
2       0 1 0   1
4       1 0 0   1
Gruppe 2
5       1 0 1   1
6       1 1 0   1


2;6     - 1 0
4;5     1 - 0

b := (a and not x) or (b and not x)

        b a x   a
Gruppe 1
1       0 0 1   1
2       0 1 0   1
4       1 0 0   1
Gruppe 2
7       1 1 1   1

a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x)

        b a x   y
Gruppe 0
0       0 0 0   1
Gruppe 1
2       0 1 0   1
Gruppe 2
3       0 1 1   1
6       1 1 0   1

0;2     0 - 0
2;3     0 1 -
2;6     - 1 0

y := (not b and not x) or (not b and a) or (a and not x)



b := (a and not x) or (b and not x)
a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and
x)
y := (not b and not x) or (not b and a) or (a and not x)

Ich baue heute abend wieder eine Schaltung. Da ich nicht so viel Platz auf den Platinen habe - mache ich das so - ich baue folgende Schaltungen, zu folgenden Schaltwerken

00 01
01 10
10 11
11 00

00 10
01 00
10 11
11

Sie sehen, das sind gar nicht mal so wenige. Das sind sogar eine Menge. Ich baue nur autonome Schaltwerke mit zwei Flip Flops.
Jetzt mal das erste.

ba ba
00 01
01 10
10 11
11 00

ba b
00 0
01 1
10 1
11 0

ba a
00 1
01 0
10 1
11 0

b := (not b and a) or (b and not a)
a := (not b)

    b a x   b a y
1   0 0 0   0 0 1
2   0 0 1   0 1 0
3   0 1 0   1 1 0
4   0 1 1   1 0 1
5   1 0 0   1 1 0
6   1 0 1   0 0 1
7   1 1 0   1 1 0
8   1 1 1   0 0 0


    b a x   b
1   0 0 0   0
2   0 0 1   0
3   0 1 0   1
4   0 1 1   1
5   1 0 0   1
6   1 0 1   0
7   1 1 0   1
8   1 1 1   0

    b a x   a
1   0 0 0   0
2   0 0 1   1
3   0 1 0   1
4   0 1 1   0
5   1 0 0   1
6   1 0 1   0
7   1 1 0   1
8   1 1 1   0

    b a x   y
1   0 0 0   1
2   0 0 1   0
3   0 1 0   0
4   0 1 1   1
5   1 0 0   0
6   1 0 1   1
7   1 1 0   0
8   1 1 1   0




    b a x   b
3   0 1 0   1
4   0 1 1   1
5   1 0 0   1
7   1 1 0   1

    b a x   a
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
7   1 1 0   1

    b a x   y
1   0 0 0   1
4   0 1 1   1
6   1 0 1   1



    b a x   b
Gruppe 1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1

    b a x   a
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
7   1 1 0   1

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 2
4   0 1 1   1
6   1 0 1   1




    b a x   b
Gruppe 1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1

3;7     - 1 0
5;7     1 - 0
3;4     0 1 -

    b a x   a
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
7   1 1 0   1

2       0 0 1
3;7     - 1 0
5;7     1 - "s

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 2
4   0 1 1   1
6   1 0 1   1



    b a x   b
Gruppe 1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1

3;7     - 1 0
5;7     1 - 0
3;4     0 1 -

b := (a and not x) or (b and not x) or (not b and a)

    b a x   a
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
7   1 1 0   1

2       0 0 1
3;7     - 1 0
5;7     1 - 0

a := (not b and not a and x) or (a and not x) or (b and not x)

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 2
4   0 1 1   1
6   1 0 1   1

y := (not b and not a and not x) or (not b and a and x) or (b and not a and x)


b := (a and not x) or (b and not x) or (not b and a)
a := (not b and not a and x) or (a and not x) or (b and not x)
y := (not b and not a and not x) or (not b and a and x) or (b and not a and x)

    bax bay
1   000 001
2   001 010
3   010 111
4   011 001
5   100 110
6   101 100
7   110 101
8   111 010


    bax b
1   000 0
2   001 0
3   010 1
4   011 0
5   100 1
6   101 1
7   110 1
8   111 0

    bax a
1   000 0
2   001 1
3   010 1
4   011 0
5   100 1
6   101 0
7   110 0
8   111 1

    bax y
1   000 1
2   001 0
3   010 1
4   011 1
5   100 0
6   101 0
7   110 1
8   111 0




    bax b
3   010 1
5   100 1
6   101 1
7   110 1

    bax a
2   001 1
3   010 1
5   100 1
8   111 1

    bax y
1   000 1
3   010 1
4   011 1
7   110 1



    bax b
Gruppe 1
3   010 1
5   100 1
Gruppe 2
6   101 1
7   110 1

    bax a
Gruppe 1
2   001 1
3   010 1
5   100 1
Gruppe 3
8   111 1

    bax y
Gruppe 0
1   000 1
Gruppe 1
3   010 1
Gruppe 2
4   011 1
7   110 1




    bax b
Gruppe 1
3   010 1
5   100 1
Gruppe 2
6   101 1
7   110 1

5;6     1 0 -
5;7     1 - 0
3;7     - 1 0

b := (b and not a) or (b and not x) or (a and not x)

    bax a
Gruppe 1
2   001 1
3   010 1
5   100 1
Gruppe 3
8   111 1

a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x)

    bax y
Gruppe 0
1   000 1
Gruppe 1
3   010 1
Gruppe 2
4   011 1
7   110 1

3;4     0 1 -
1;3     0 - 0
3;7     - 1 0

y := (not b and a) or (not b and not x) or (a and not x)


b := (b and not a) or (b and not x) or (a and not x)
a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x)
y := (not b and a) or (not b and not x) or (a and not x)

b := (not b and not a) or (b and a) or (not b and not x) or (not x)
a := b and x
y := (not b and not a) or (b and a and not x)

    b a x   b a y
0   0 0 0   1 0 1
1   0 0 1   1 0 1
2   0 1 0   1 0 0
3   0 1 1   0 0 0
4   1 0 0   1 0 0
5   1 0 1   0 1 0
6   1 1 0   1 0 1
7   1 1 1   1 1 0

    b a x   b a y
1   0 0 0   0 1 1
2   0 0 1   0 1 1
3   0 1 0   0 0 0
4   0 1 1   1 0 1
5   1 0 0   0 0 1
6   1 0 1   0 1 0
7   1 1 0   1 1 1
8   1 1 1   1 1 0


    b a x   b
1   0 0 0   0
2   0 0 1   0
3   0 1 0   0
4   0 1 1   1
5   1 0 0   0
6   1 0 1   0
7   1 1 0   1
8   1 1 1   1

    b a x   a
1   0 0 0   1
2   0 0 1   1
3   0 1 0   0
4   0 1 1   0
5   1 0 0   0
6   1 0 1   1
7   1 1 0   1
8   1 1 1   1

    b a x   y
1   0 0 0   1
2   0 0 1   1
3   0 1 0   0
4   0 1 1   1
5   1 0 0   1
6   1 0 1   0
7   1 1 0   1
8   1 1 1   0




    b a x   b
4   0 1 1   1
7   1 1 0   1
8   1 1 1   1

    b a x   a
1   0 0 0   1
2   0 0 1   1
6   1 0 1   1
7   1 1 0   1
8   1 1 1   1

    b a x   y
1   0 0 0   1
2   0 0 1   1
4   0 1 1   1
5   1 0 0   1
7   1 1 0   1




    b a x   b
Gruppe 2
4   0 1 1   1
7   1 1 0   1
Gruppe 3
8   1 1 1   1

    b a x   a
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
Gruppe 2
6   1 0 1   1
7   1 1 0   1
Gruppe 3
8   1 1 1   1

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
5   1 0 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1



    b a x   b
Gruppe 2
4   0 1 1   1
7   1 1 0   1
Gruppe 3
8   1 1 1   1

4;8     - 1 1
7;8     1 1 -

b := (a and x) or (b and a)

    b a x   a
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
Gruppe 2
6   1 0 1   1
7   1 1 0   1
Gruppe 3
8   1 1 1   1

1;2     0 0 -
2;6     - 0 1
6;8     1 - 1
7;8     1 1 -

a := (not b and not a) or (not a and x) or (b and x) or (b and a)

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
5   1 0 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1

1;2     0 0 -
1;5     - 0 0
2;4     0 - 1
5;7     1 - 0

y := (not b and not a) or (not a and not x) or (not b and x) or (b and not x)


b := (a and x) or (b and a)
a := (not b and not a) or (not a and x) or (b and x) or (b and a)
y := (not b and not a) or (not a and not x) or (not b and x) or (b and not x)

    b a x   b a y
1   0 0 0   1 0 1
2   0 0 1   1 1 1
3   0 1 0   0 0 1
4   0 1 1   0 1 0
5   1 0 0   1 0 0
6   1 0 1   1 1 0
7   1 1 0   0 1 1
8   1 1 1   1 0 1


    b a x   b
1   0 0 0   1
2   0 0 1   1
3   0 1 0   0
4   0 1 1   0
5   1 0 0   1
6   1 0 1   1
7   1 1 0   0
8   1 1 1   1

    b a x   a
1   0 0 0   0
2   0 0 1   1
3   0 1 0   0
4   0 1 1   1
5   1 0 0   0
6   1 0 1   1
7   1 1 0   1
8   1 1 1   0

    b a x   y
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
4   0 1 1   0
5   1 0 0   0
6   1 0 1   0
7   1 1 0   1
8   1 1 1   1




    b a x   b
1   0 0 0   1
2   0 0 1   1
5   1 0 0   1
6   1 0 1   1
8   1 1 1   1

    b a x   a
2   0 0 1   1
4   0 1 1   1
6   1 0 1   1
7   1 1 0   1

    b a x   y
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
7   1 1 0   1
8   1 1 1   1



    b a x   b
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
5   1 0 0   1
Gruppe 2
6   1 0 1   1
Gruppe 3
8   1 1 1   1

    b a x   a
Gruppe 1
2   0 0 1   1
Gruppe 2
4   0 1 1   1
6   1 0 1   1
7   1 1 0   1

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
3   0 1 0   1
Gruppe 2
7   1 1 0   1
Gruppe 3
8   1 1 1   1




    b a x   b
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
5   1 0 0   1
Gruppe 2
6   1 0 1   1
Gruppe 3
8   1 1 1   1

1;2     0 0 -
1;5     - 0 0
2;6     - 0 1
5;6     1 0 -
6;8     1 - 0

1;5     - 0 0
2;6     - 0 1
1;2     0 0 -
5;6     1 0 -
6;8     1 - 0

1;5;2;5     - 0 -
1;2;5;6     - 0 -
6;8         1 - 0

b := (not a) or (b and not x)

    b a x   a
Gruppe 1
2   0 0 1   1
Gruppe 2
4   0 1 1   1
6   1 0 1   1
7   1 1 0   1

2;4     0 - 1
2;6     - 0 1
7       1 1 0

a := (not b and x) or (not a and x) or (b and a and not x)

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
3   0 1 0   1
Gruppe 2
7   1 1 0   1
Gruppe 3
8   1 1 1   1

1;2     0 0 -
1;3     0 - 0
3;7     - 1 0
7;8     1 1 -

y := (not b and not a) or (not b and not x) or (a and not x) or (b and a)



b := (not a) or (b and not x)
a := (not b and x) or (not a and x) or (b and a and not x)
y := (not b and not a) or (not b and not x) or (a and not x) or (b and a)

    b a x   b a y
1   0 0 0   0 0 0
2   0 0 1   0 1 0
3   0 1 0   0 0 1
4   0 1 1   1 0 1
5   1 0 0   0 0 1
6   1 0 1   0 1 1
7   1 1 0   1 0 1
8   1 1 1   0 0 1



    b a x   b
1   0 0 0   0
2   0 0 1   0
3   0 1 0   0
4   0 1 1   1
5   1 0 0   0
6   1 0 1   0
7   1 1 0   1
8   1 1 1   0

    b a x   a
1   0 0 0   0
2   0 0 1   1
3   0 1 0   0
4   0 1 1   0
5   1 0 0   0
6   1 0 1   1
7   1 1 0   0
8   1 1 1   0

    b a x   y
1   0 0 0   0
2   0 0 1   0
3   0 1 0   1
4   0 1 1   1
5   1 0 0   1
6   1 0 1   1
7   1 1 0   1
8   1 1 1   1



    b a x   b
4   0 1 1   1
7   1 1 0   1

    b a x   a
2   0 0 1   1
6   1 0 1   1

    b a x   y
3   0 1 0   1
4   0 1 1   1
5   1 0 0   1
6   1 0 1   1
7   1 1 0   1
8   1 1 1   1



    b a x   b
Gruppe 2
4   0 1 1   1
7   1 1 0   1

b := (not b and a and x) or (b and a and not x)

    b a x   a
Gruppe 1
2   0 0 1   1
Gruppe 2
6   1 0 1   1

2;6     - 0 1

a := (not a and x)


    b a x   y
Gruppe 1
5   1 0 0   1
3   0 1 0   1
Gruppe 2
4   0 1 1   1
6   1 0 1   1
7   1 1 0   1
Gruppe 3
8   1 1 1   1

5;6     1 0 -
5;7     1 - 0
3;4     0 1 -
3;7     - 1 0
4;8     - 1 1
4;6     1 - 1
7;8     1 1 -


5;6     1 0 -
3;4     0 1 -
7;8     1 1 -
4;6     1 - 1
5;7     1 - 0
3;7     - 1 0
4;8     - 1 1

Gruppe 1
5;6     1 0 -
3;4     0 1 -
Gruppe 2
7;8     1 1 -

5;6;3;4     1 - -
3;4;7;8     - 1 -

Gruppe 1
5;7     1 - 0
Gruppe 2
4;6     1 - 1

4;6;5;7     1 - -

Gruppe 1
3;7     - 1 0
Gruppe 2
4;8     - 1 1

3;7;4;8     - 1 -

5;6;3;4     1 - -
3;4;7;8     - 1 -

y := b or a


b := (not b and a and x) or (b and a and not x)
a := (not a and x)
y := b or a

    c b a   c b a
0   0 0 0   0 1 1
1   0 0 1   0 0 0
2   0 1 0   1 1 1
3   0 1 1   0 0 1
4   1 0 0   1 0 1
5   1 0 1   1 1 1
6   1 1 0   0 1 1
7   1 1 1   1 0 0


    c b a   c
0   0 0 0   0
1   0 0 1   0
2   0 1 0   1
3   0 1 1   0
4   1 0 0   1
5   1 0 1   1
6   1 1 0   0
7   1 1 1   1

    c b a   b
0   0 0 0   1
1   0 0 1   0
2   0 1 0   1
3   0 1 1   0
4   1 0 0   0
5   1 0 1   1
6   1 1 0   1
7   1 1 1   0

    c b a   a
0   0 0 0   1
1   0 0 1   0
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
6   1 1 0   1
7   1 1 1   0



    c b a   c
2   0 1 0   1
4   1 0 0   1
5   1 0 1   1
7   1 1 1   1

    c b a   b
0   0 0 0   1
2   0 1 0   1
5   1 0 1   1
6   1 1 0   1

    c b a   a
0   0 0 0   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
6   1 1 0   1



    c b a   c
Gruppe 1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
5   1 0 1   1
Gruppe 3
7   1 1 1   1

    c b a   b
Gruppe 0
0   0 0 0   1
Gruppe 1
2   0 1 0   1
Gruppe 2
5   1 0 1   1
6   1 1 0   1

    c b a   a
Gruppe 0
0   0 0 0   1
Gruppe 1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1
6   1 1 0   1


    c b a   c
Gruppe 1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
5   1 0 1   1
Gruppe 3
7   1 1 1   1

2       0 1 0
4;5     1 0 -
4;7     1 - 1

a := (not c and b and not a) or (c and not b) or (c and a)

c b a   b
Gruppe 0
0   0 0 0   1
Gruppe 1
2   0 1 0   1
Gruppe 2
5   1 0 1   1
6   1 1 0   1

0;2     0 - 0
5       1 0 1
2;6     - 1 0

b := (not c and not a) or (c and not b and a) or (b and not a)

    c b a   a
Gruppe 0
0   0 0 0   1
Gruppe 1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1
6   1 1 0   1

0;2     0 - 0
0;4     - 0 0
2;3     0 1 -
2;6     - 1 0
4;5     1 0 -
4;6     1 - 0



2;6     - 1 0
0;4     - 0 0
4;6     1 - 0
0;2     0 - 0
2;3     0 1 -
4;5     1 0 -

2;6;0;4     - - 0
0;6;0;2     - - 0
2;3     0 1 -
4;5     1 0 -

2;6;0;4     - - 0
2;3         0 1 -
4;5         1 0 -

c := (not a) or (not c and b) or (c and not b)


a := (not c and b and not a) or (c and not b) or (c and a)
b := (not c and not a) or (c and not b and a) or (b and not a)
c := (not a) or (not c and b) or (c and not b)

000 0   001
000 1   010
001 0   011
001 1   100
010 0   101
010 1   110

001 0   000
001 1   000
100 0   000
100 1   000
101 0   000
101 1   000
110 0   000
110 1   000

000 0   0
000 1   0
001 0   0
001 1   1
010 0   1
010 1   1

000 0   0
000 1   1
001 0   1
001 1   0
010 0   0
010 1   1

000 0   1
000 1   0
001 0   1
001 1   0
010 0   1
010 1   0

001 1   1
010 0   1
010 1   1

000 1   1
001 0   1
010 1   1

000 0   1
001 0   1
010 0   1

Gruppe 1
0   010 0   1
Gruppe 2
1   001 1   1
2   010 1   1

1       001 1   1
0;2     010 -   1

c = (not c and not b and a and x) or (not c and b and not a)
--------------------

Gruppe 2
0   000 1   1
1   001 0   1
Gruppe 3
3   010 1   1

1       001 0   1
0;3     0-0 1   1

b = (not c and not b and a and not x) or (not c and not a and x)

--------------------

Gruppe 1
0   000 0   1
Gruppe 2
1   001 0   1
2   010 0   1

0;1     00-0    1
0;2     0-00    1

a = (not c and not b and not x) or (not c and not a and not x)







c = (not c and not b and a and x) or (not c and b and not a)
b = (not c and not b and a and not x) or (not c and not a and x)
a = (not c and not b and not x) or (not c and not a and not x)

0 0 0   0 1 1
0 0 1   0 1 1
0 1 0   1 1 1
0 1 1   1 0 1
1 0 0   0 1 1
1 0 1   0 0 0
1 1 0   1 0 1
1 1 1   1 1 1

    b a x   b a y
1   0 0 0   0 1 1
2   0 0 1   0 1 1
3   0 1 0   1 1 1
4   0 1 1   1 0 1
5   1 0 0   0 1 1
6   1 0 1   0 0 0
7   1 1 0   1 0 1
8   1 1 1   1 1 1


    b a x   b
1   0 0 0   0
2   0 0 1   0
3   0 1 0   1
4   0 1 1   1
5   1 0 0   0
6   1 0 1   0
7   1 1 0   1
8   1 1 1   1

    b a x   a
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
4   0 1 1   0
5   1 0 0   1
6   1 0 1   0
7   1 1 0   0
8   1 1 1   1

    b a x   y
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
4   0 1 1   1
5   1 0 0   1
6   1 0 1   0
7   1 1 0   1
8   1 1 1   1





    b a x   b
3   0 1 0   1
4   0 1 1   1
7   1 1 0   1
8   1 1 1   1

    b a x   a
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
8   1 1 1   1

    b a x   y
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
4   0 1 1   1
5   1 0 0   1
7   1 1 0   1
8   1 1 1   1






    b a x   b
Gruppe 1
3   0 1 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1
Gruppe 3
8   1 1 1   1

3;4     0 1 -
4;8     - 1 1
7;8     1 1 -

b := (not b and a) or (a and x) or (b and a)

    b a x   a
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
8   1 1 1   1

    b a x   a
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 3
8   1 1 1   1

1;2     0 0 -
1;3     0 - 0
1;5     - 0 0
8       1 1 1

a := (not b and not a) or (not b and not x) or (not a and not x) or (b and a and x)

    b a x   y
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
4   0 1 1   1
5   1 0 0   1
7   1 1 0   1
8   1 1 1   1


    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1
Gruppe 3
8   1 1 1   1

1;2     0 0 -
1;3     0 - 0
1;5     - 0 0
2;4     0 - 1
3;4     0 1 -
3;7     - 1 0
5;7     1 - 0
4;8     - 1 1
7;8     1 1 -



1;2     0 0 -
3;4     0 1 -
7;8     1 1 -
5;7     1 - 0
2;4     0 - 1
1;3     0 - 0
3;7     - 1 0
4;8     - 1 1
1;5     - 0 0

1;2;3;4     0 - -
3;4;7;8     - 1 -
5;7;1;3     - - 0
2;4;1;3     0 - -
1;5;3;7     - - 0
3;7;4;8     - 1 -



1;2;3;4     0 - -
2;4;1;3     0 - -
3;4;7;8     - 1 -
3;7;4;8     - 1 -
5;7;1;3     - - 0
1;5;3;7     - - 0


1;2;3;4     0 - -
3;4;7;8     - 1 -
1;5;3;7     - - 0

y := not b or a or not x



b := (not b and a) or (a and x) or (b and a)
a := (not b and not a) or (not b and not x) or (not a and not x) or (b and a and x)
y := not b or a or not x

    b a x   b a y
0   0 0 0   1 0 1
1   0 0 1   1 1 1
2   0 1 0   1 1 1
3   0 1 1   1 1 1
4   1 0 0   1 0 1
5   1 0 1   0 0 1
6   1 1 0   0 0 0
7   1 1 1   1 1 1


    b a x   b
0   0 0 0   1
1   0 0 1   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   0
6   1 1 0   0
7   1 1 1   1

    b a x   a
0   0 0 0   0
1   0 0 1   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   0
5   1 0 1   0
6   1 1 0   0
7   1 1 1   1

    b a x   y
0   0 0 0   1
1   0 0 1   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
6   1 1 0   0
7   1 1 1   1





    b a x   b
0   0 0 0   1
1   0 0 1   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
7   1 1 1   1

    b a x   a
1   0 0 1   1
2   0 1 0   1
3   0 1 1   1
7   1 1 1   1

    b a x   y
0   0 0 0   1
1   0 0 1   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
7   1 1 1   1



    b a x   b
Gruppe 0
0   0 0 0   1
Gruppe 1
1   0 0 1   1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
Gruppe 3
7   1 1 1   1

    b a x   a
Gruppe 1
1   0 0 1   1
2   0 1 0   1
Gruppe 2
3   0 1 1   1
Gruppe 3
7   1 1 1   1

    b a x   y
Gruppe 0
0   0 0 0   1
Gruppe 1
1   0 0 1   1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1
Gruppe 3
7   1 1 1   1



    b a x   b
Gruppe 0
0   0 0 0   1
Gruppe 1
1   0 0 1   1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
Gruppe 3
7   1 1 1   1

0;1     0 0 -
0;2     0 - 0
0;4     - 0 0
1;3     0 - 1
2;3     0 1 -
3;7     - 1 1


0;1     0 0 -
2;3     0 1 -
0;2     0 - 0
1;3     0 - 1
0;4     - 0 0
3;7     - 1 1

0;1;2;3     0 - -
1;3;0;2     0 - -
0;4         - 0 0
3;7         - 1 1

0;1;2;3     0 - -
0;4         - 0 0
3;7         - 1 1

b := (not b) or (not a and not x) or (a and x)


    b a x   a
Gruppe 1
1   0 0 1   1
2   0 1 0   1
Gruppe 2
3   0 1 1   1
Gruppe 3
7   1 1 1   1

1;3     0 - 1
2;3     0 1 -
3;7     - 1 1

a := (not b and x) or (not b and a) or (a and x)

    b a x   y
Gruppe 0
0   0 0 0   1
Gruppe 1
1   0 0 1   1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1
Gruppe 3
7   1 1 1   1

0;1     0 0 -
0;2     0 - 0
0;4     - 0 0
1;3     0 - 1
1;5     - 0 1
2;3     0 1 -
7;5     1 0 -
3;7     - 1 1
5;7     1 - 1




0;4     - 0 0
1;5     - 0 1
3;7     - 1 1
0;2     0 - 0
1;3     0 - 1
5;7     1 - 1
2;3     0 1 -
7;5     1 0 -
0;1     0 0 -




0;4     - 0 0
1;5     - 0 1
3;7     - 1 1

0;4;1;5    - 0 -
1;5;3;7    - - 1

0;2     0 - 0
1;3     0 - 1
5;7     1 - 1

0;2;1;3     0 - 1
1;3;5;7     - 0 1

0;1     0 0 -
2;3     0 1 -
7;5     1 0 -

0;1;2;3     0 - -
0;1;7;5     - 0 -

            0   1   2   3   4   5   7
0;4;1;5     *   *           *   *
1;5;3;7         *       *       *   *
0;2;1;3     *   *   *   *
1;3;5;7         *       *       *   *
0;1;2;3     *   *   *   *
0;1;7;5     *   *               *   *


            0   1   2   3   4   5   7
0;4;1;5     *   *           *   *
1;5;3;7         *       *       *   *
0;2;1;3     *   *   *   *

y := (not a) or (not a and x) or (not b and x)



b := (not b) or (not a and not x) or (a and x)
a := (not b and x) or (not b and a) or (a and x)
y := (not a) or (not a and x) or (not b and x)

    b a x   b a y
1   0 0 0   0 0 1
2   0 0 1   0 1 0
3   0 1 0   1 1 1
4   0 1 1   0 0 1
5   1 0 0   1 1 0
6   1 0 1   1 0 0
7   1 1 0   1 0 1
8   1 1 1   0 1 0


    b a x   b
1   0 0 0   0
2   0 0 1   0
3   0 1 0   1
4   0 1 1   0
5   1 0 0   1
6   1 0 1   1
7   1 1 0   1
8   1 1 1   0

    b a x   a
1   0 0 0   0
2   0 0 1   1
3   0 1 0   1
4   0 1 1   0
5   1 0 0   1
6   1 0 1   0
7   1 1 0   0
8   1 1 1   1

    b a x   y
1   0 0 0   1
2   0 0 1   0
3   0 1 0   1
4   0 1 1   1
5   1 0 0   0
6   1 0 1   0
7   1 1 0   1
8   1 1 1   0





    b a x   b
3   0 1 0   1
5   1 0 0   1
6   1 0 1   1
7   1 1 0   1

    b a x   a
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
8   1 1 1   1

    b a x   y
1   0 0 0   1
3   0 1 0   1
4   0 1 1   1
7   1 1 0   1




    b a x   b
Gruppe 1
3   0 1 0   1
Gruppe 2
5   1 0 0   1
6   1 0 1   1
7   1 1 0   1

    b a x   a
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 3
8   1 1 1   1

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
3   0 1 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1



    b a x   b
Gruppe 1
3   0 1 0   1
Gruppe 2
5   1 0 0   1
6   1 0 1   1
7   1 1 0   1

3;7     - 1 0
6       1 0 1
7       1 1 0

b := (a and not x) or (b and not a and x) or (b and a and not x)

    b a x   a
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 3
8   1 1 1   1

2   0 0 1
3   0 1 0
5   1 0 0
8   1 1 1


a := (not b and not a and x) or (not b and a and not x) or (b and not and not x) or (b and a and x)

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
3   0 1 0   1
Gruppe 2
4   0 1 1   1
7   1 1 0   1

1;3     0 - 0
3;4     0 1 -
3;7     - 1 0

x := (not b and not x) or (not b and a) or (a and not x)



b := (a and not x) or (b and not a and x) or (b and a and not x)
a := (not b and not a and x) or (not b and a and not x) or (b and not and not x) or (b and a and x)
x := (not b and not x) or (not b and a) or (a and not x)

    b a x   b a y
1   0 0 0   1 0 1
2   0 0 1   1 0 1
3   0 1 0   1 0 0
4   0 1 1   0 0 0
5   1 0 0   1 0 0
6   1 0 1   0 1 0
7   1 1 0   1 0 1
8   1 1 1   1 1 0


    b a x   b
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
4   0 1 1   0
5   1 0 0   1
6   1 0 1   0
7   1 1 0   1
8   1 1 1   1

    b a x   a
1   0 0 0   0
2   0 0 1   0
3   0 1 0   0
4   0 1 1   0
5   1 0 0   0
6   1 0 1   1
7   1 1 0   0
8   1 1 1   1

    b a x   y
1   0 0 0   1
2   0 0 1   1
3   0 1 0   0
4   0 1 1   0
5   1 0 0   0
6   1 0 1   0
7   1 1 0   1
8   1 1 1   0



    b a x   b
1   0 0 0   1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
7   1 1 0   1
8   1 1 1   1

    b a x   a
6   1 0 1   1
8   1 1 1   1

    b a x   y
1   0 0 0   1
2   0 0 1   1
7   1 1 0   1



    b a x   b
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
7   1 1 0   1
Gruppe 3
8   1 1 1   1

    b a x   a
Gruppe 2
6   1 0 1   1
Gruppe 3
8   1 1 1   1

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
Gruppe 2
7   1 1 0   1




    b a x   b
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
7   1 1 0   1
Gruppe 3
8   1 1 1   1

1;2         0 0 -
1;3         0 - 0
1;5         - 0 0
3;7         - 1 0
5;7         - 1 0
7;8         1 1 -

    b a x   a
Gruppe 2
6   1 0 1   1
Gruppe 3
8   1 1 1   1

6;8         1 - 1

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
Gruppe 2
7   1 1 0   1

1;2         0 0 -
7           1 1 0





    b a x   b
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
3   0 1 0   1
5   1 0 0   1
Gruppe 2
7   1 1 0   1
Gruppe 3
8   1 1 1   1

1;2         0 0 -
7;8         1 1 -
1;3         0 - 0
1;5         - 0 0
3;7         - 1 0
5;7         - 1 0


1;2         0 0 -
7;8         1 1 -
1;3         0 - 0
1;5;3;7     - - 0
1;5;5;7     - - 0

b := (not b and not a) or (b and a) or (not b and not x) or (not x)


    b a x   a
Gruppe 2
6   1 0 1   1
Gruppe 3
8   1 1 1   1

6;8         1 - 1

a := (b and x)

    b a x   y
Gruppe 0
1   0 0 0   1
Gruppe 1
2   0 0 1   1
Gruppe 2
7   1 1 0   1

1;2         0 0 -
7           1 1 0

y := (not b and not a) or (b and a and not x)

0   0 0 0   1 0 1
1   0 0 1   1 0 0
2   0 1 0   0 0 1
3   0 1 1   0 1 1
4   1 0 0   0 0 1
5   1 0 1   0 0 1
6   1 1 0   0 1 0
7   1 1 1   1 0 1


0   0 0 0   1
1   0 0 1   1
2   0 1 0   0
3   0 1 1   0
4   1 0 0   0
5   1 0 1   0
6   1 1 0   0
7   1 1 1   1

0   0 0 0   0
1   0 0 1   0
2   0 1 0   0
3   0 1 1   1
4   1 0 0   0
5   1 0 1   0
6   1 1 0   1
7   1 1 1   0

0   0 0 0   1
1   0 0 1   0
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
6   1 1 0   0
7   1 1 1   1



0   0 0 0   1
1   0 0 1   1
7   1 1 1   1

3   0 1 1   1
6   1 1 0   1

0   0 0 0   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
7   1 1 1   1



0   0 0 0   1
1   0 0 1   1
7   1 1 1   1

0;1     0 0 -
7       1 1 1

3   0 1 1   1
6   1 1 0   1

3       0 1 1
6       1 1 0


0   0 0 0   1
2   0 1 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
7   1 1 1   1

Gruppe 0
0   0 0 0   1
Gruppe 1
2   0 1 0   1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1
Gruppe 3
7   1 1 1   1

0;2     0 - 0
0;4     - 0 0
2;3     0 1 -
4;5     1 0 -
3;7     - 1 1
5;7     1 - 1


3;7     - 1 1
0;4     - 0 0
5;7     1 - 1
0;2     0 - 0
2;3     0 1 -
4;5     1 0 -


0;1     0 0 -
7       1 1 1
c := (not c and not b) or (c and b and a)


3       0 1 1
6       1 1 0
b := (not c and b and a) or (c and b and not a)

3;7     - 1 1
0;4     - 0 0
5;7     1 - 1
0;2     0 - 0
2;3     0 1 -
4;5     1 0 -

a := (b and a) or (not b and not a) or (c and a) or (not c and not a) or (not c and b) or (c and not b)


c := (not c and not b) or (c and b and a)
b := (not c and b and a) or (c and b and not a)
a := (b and a) or (not b and not a) or (c and a) or (not c and not a) or (not c and b) or (c and not b)

0 0 0   1 0 0
0 0 1   0 0 1
0 1 0   0 1 0
0 1 1   1 0 0
1 0 0   1 0 1
1 0 1   1 1 0
1 1 0   0 0 0
1 1 1   0 1 0

b a x   b a y
0 0 0   1 0 0
0 0 1   0 0 1
0 1 0   0 1 0
0 1 1   1 0 0
1 0 0   1 0 1
1 0 1   1 1 0
1 1 0   0 0 0
1 1 1   0 1 0

    b a x   b a y
0   0 0 0   1 0 0
1   0 0 1   0 0 1
2   0 1 0   0 1 0
3   0 1 1   1 0 0
4   1 0 0   1 0 1
5   1 0 1   1 1 0
6   1 1 0   0 0 0
7   1 1 1   0 1 0

    b a x   b
0   0 0 0   1
1   0 0 1   0
2   0 1 0   0
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1
6   1 1 0   0
7   1 1 1   0

    b a x   a
0   0 0 0   0
1   0 0 1   0
2   0 1 0   1
3   0 1 1   0
4   1 0 0   0
5   1 0 1   1
6   1 1 0   0
7   1 1 1   1

    b a x   y
0   0 0 0   0
1   0 0 1   1
2   0 1 0   0
3   0 1 1   0
4   1 0 0   1
5   1 0 1   0
6   1 1 0   0
7   1 1 1   0


    b a x   b
0   0 0 0   1
3   0 1 1   1
4   1 0 0   1
5   1 0 1   1

    b a x   a
2   0 1 0   1
5   1 0 1   1
7   1 1 1   1

    b a x   y
1   0 0 1   1
4   1 0 0   1


    b a x   b
Gruppe 0
0   0 0 0   1
Gruppe 1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1

    b a x   a
Gruppe 1
2   0 1 0   1
Gruppe 2
5   1 0 1   1
Gruppe 3
7   1 1 1   1

    b a x   y
Gruppe 1
1   0 0 1   1
4   1 0 0   1



    b a x   b
Gruppe 0
0   0 0 0   1
Gruppe 1
4   1 0 0   1
Gruppe 2
3   0 1 1   1
5   1 0 1   1

0;4     - 0 0
3       0 1 1
4;5     1 0 -

b := (not a and not x) or (not b and a and x) or (b and not a)
----------------------

    b a x   a
Gruppe 1
2   0 1 0   1
Gruppe 2
5   1 0 1   1
Gruppe 3
7   1 1 1   1

2       0 1 0
5;7     1 - 1

a := (not b and a and not x) or (b and x)

----------------------

    b a x   y
Gruppe 1
1   0 0 1   1
4   1 0 0   1

1   0 0 1   1
4   1 0 0   1

y := (not b and not a and x) or (b and not a not x)

---------------------

b := (not a and not x) or (not b and a and x) or (b and not a)
a := (not b and a and not x) or (b and x)
y := (not b and not a and x) or (b and not a not x)

000 0       001
000 1       010
001 0       100
001 1       101
010 0       011
010 1       101

Das Schaltwerk lautet wie folgt:

Ein Multiplizierschaltwerk.

Bei dem wird 8 * 6 die 6 addiert. Zum Beispiel, indem 8 Mal hintereinander eine Addition von 6 stattfindet.
Aber mit einem feinen Unterschied: Zu der 6, die addiert wird, wird jedes Mal eine 1 addiert. Die 6 wird jedes Mal um 1 erh"oht.

Das Operationswerk hat zwei Register.

Eines f"ur die 8 das andere f"ur die 6.
Und zwei addierer.
Am Anfang von der 6 zum Beispiel ist ein Multplexer.

Vor der 8 auch, da kann am Ende das Ergebnis landen.