0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 1 12 1 1 0 0 0 13 1 1 0 1 1 14 1 1 1 0 1 15 1 1 1 1 1 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 6 0 1 1 0 1 11 1 0 1 1 1 13 1 1 0 1 1 14 1 1 1 0 1 15 1 1 1 1 1 Gruppe 1 2 0 0 1 0 1 4 0 1 0 0 1 Gruppe 2 3 0 0 1 1 1 6 0 1 1 0 1 Gruppe 3 11 1 0 1 1 1 13 1 1 0 1 1 14 1 1 1 0 1 Gruppe 4 15 1 1 1 1 1 2;3 0 0 1 - 2;6 0 - 1 0 4;6 0 1 - 0 3;11 - 0 1 1 6;14 - 1 1 0 11;15 1 - 1 1 13;15 1 1 - 1 14;15 1 1 1 - 2;3 0 0 1 - 14;15 1 1 1 - 4;6 0 1 - 0 13;15 1 1 - 1 2;6 0 - 1 0 11;15 1 - 1 1 3;11 - 0 1 1 6;14 - 1 1 0 2 3 4 6 11 13 14 15 2;3 * * 14;15 * * 4;6 * * 13;15 * * 2;6 * * 11;15 * * 3;11 * * 6;14 * * 2 3 4 6 11 13 14 15 2;3 * * 14;15 * * 4;6 * * 13;15 * * 11;15 * * 2;3 0 0 1 - 14;15 1 1 1 - 4;6 0 1 - 0 13;15 1 1 - 1 11;15 1 - 1 1 (not x3 and not not x2 and x1) or (x3 and x2 and x1) or (not x3 and x2 and not x0) or (x3 and x2 and x0) or (x3 and x1 and x0)
0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 1 15 1 1 1 1 1 1 0 0 0 1 1 2 0 0 1 0 1 6 0 1 1 0 1 8 1 0 0 0 1 10 1 0 1 0 1 14 1 1 1 0 1 15 1 1 1 1 1 Gruppe 1 1 0 0 0 1 1 2 0 0 1 0 1 8 1 0 0 0 1 Gruppe 2 6 0 1 1 0 1 10 1 0 1 0 1 Gruppe 3 14 1 1 1 0 1 Gruppe 4: 15 1 1 1 1 1 1 0 0 0 1 2;6 0 - 1 0 2;10 - 0 1 0 8;10 1 0 - 0 6;14 - 1 1 0 10;14 1 - 1 0 14;15 1 1 1 - 1 0 0 0 1 8;10 1 0 - 0 2;6 0 - 1 0 10;14 1 - 1 0 2;10 - 0 1 0 6;14 - 1 1 0 14;15 1 1 1 - 2;6;10;14 - - 1 0 2;10;6;14 - - 1 0 1 0 0 0 1 8;10 1 0 - 0 14;15 1 1 1 - 2;10;6;14 - - 1 0 1 2 6 8 10 14 15 1 * 8;10 * * 14;15 * * 2;10;6;14 * * * *
0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 1 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 1 1 0 0 0 1 1 2 0 0 1 0 1 8 1 0 0 0 1 12 1 1 0 0 1 15 1 1 1 1 1 Gruppe 1: 1 0 0 0 1 1 2 0 0 1 0 1 8 1 0 0 0 1 Gruppe 2: 12 1 1 0 0 1 Gruppe 4: 15 1 1 1 1 1 1 0 0 0 1 2 0 0 1 0 8;12 1 - 0 0 15 1 1 1 1 y = (not x3 and not x2 and not x1 and x0) or (not x3 and not x2 and x1 and not x0) or (x3 and not x1 and not x0) or (x3 and x2 and x1 and x0)
0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 0 12 1 1 0 0 1 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 1 1 0 0 0 1 1 4 0 1 0 0 1 10 1 0 1 0 1 12 1 1 0 0 1 15 1 1 1 1 1 Gruppe 1 1 0 0 0 1 1 4 0 1 0 0 1 Gruppe 2 10 1 0 1 0 1 12 1 1 0 0 1 Gruppe 4 15 1 1 1 1 1 10 1 0 1 0 15 1 1 1 1 1 0 0 0 1 4;12 - 1 0 0 x = (d and not c and b and a) or (d and c and b and a) or (not d and not c and not b and a) or (c and not b and not a)
0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 1 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 0 0 0 0 0 0 1 2 0 0 1 0 1 3 0 0 1 1 1 7 0 1 1 1 1 9 1 0 0 1 1 11 1 0 1 1 1 12 1 1 0 0 1 13 1 1 0 1 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 2 0 0 1 0 1 Gruppe 2 3 0 0 1 1 1 9 1 0 0 1 1 12 1 1 0 0 1 Gruppe 2 7 0 1 1 1 1 11 1 0 1 1 1 13 1 1 0 1 1 0;2 0 0 - 0 2;3 0 0 1 - 3;7 0 - 1 1 3;11 - 0 1 1 9;11 1 0 - 1 9;13 1 - 0 1 12;13 1 1 0 - 3;11 - 0 1 1 9;13 1 - 0 1 3;7 0 - 1 1 9;11 1 0 - 1 0;2 0 0 - 0 2;3 0 0 1 - 12;13 1 1 0 - 9 2 3 12 7 11 13 0 3;11 * * 9;13 * * 3;7 * * 9;11 * * 0;2 * * 2;3 * * 12;13 * * 9 2 3 12 7 11 13 0 3;11 * * 9;13 * * 3;7 * * 0;2 * * 12;13 * *
0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 0 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 0 1 0 0 0 1 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 0 1 1 1 13 1 1 0 1 1 Gruppe 1 1 0 0 0 1 1 8 1 0 0 0 1 Gruppe 2 5 0 1 0 1 1 6 0 1 1 0 1 9 1 0 0 1 1 10 1 0 1 0 1 Gruppe 3 7 0 1 1 1 1 11 1 0 1 1 1 13 1 1 0 1 1 1;5 0 - 0 1 1;9 - 0 0 1 8;9 1 0 0 - 8;10 1 0 - 0 5;7 0 1 - 1 5;13 - 1 0 1 6;7 0 1 1 - 9;11 1 0 - 1 9;13 1 - 0 1 10:11 1 0 1 - 6;7 0 1 1 - 10:11 1 0 1 - 8;9 1 0 0 - 9;11 1 0 - 1 5;7 0 1 - 1 8;10 1 0 - 0 9;13 1 - 0 1 1;5 0 - 0 1 1;9 - 0 0 1 5;13 - 1 0 1 6;7 0 1 1 - 10;11;8;9 1 0 - - 5;7 0 1 - 1 9;11;8;10 1 0 - - 9;13;1;5 - - 0 1 1;9;5;13 - - 0 1 6;7 0 1 1 - 5;7 0 1 - 1 9;11;8;10 1 0 - - 1;9;5;13 - - 0 1 1 5 6 7 8 9 10 11 13 6;7 * * 5;7 * * 9;11;8;10 * * * * 1;9;5;13 * * * * 1 5 6 7 8 9 10 11 13 6;7 * * 9;11;8;10 * * * * 1;9;5;13 * * * *
0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 1 15 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 5 0 1 0 1 1 7 0 1 1 1 1 8 1 0 0 0 1 10 1 0 1 0 1 11 1 0 1 1 1 14 1 1 1 0 1 15 1 1 1 1 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 1 0 0 0 1 1 2 0 0 1 0 1 8 1 0 0 0 1 Gruppe 2 5 0 1 0 1 1 10 1 0 1 0 1 Gruppe 3 7 0 1 1 1 1 11 1 0 1 1 1 14 1 1 1 0 1 Gruppe 4 15 1 1 1 1 1 0;1 0 0 0 - 0;2 0 0 - 0 0;8 - 0 0 0 1;5 0 - 0 1 2;10 - 0 1 0 8;10 1 0 - 0 5;7 0 1 - 1 10;11 1 0 1 - 10;14 1 - 1 0 7;15 - 1 1 1 11;15 1 - 1 1 14;15 1 1 1 - 7;15 - 1 1 1 0;8 - 0 0 0 2;10 - 0 1 0 1;5 0 - 0 1 11;15 1 - 1 1 10;14 1 - 1 0 8;10 1 0 - 0 5;7 0 1 - 1 0;2 0 0 - 0 10;11 1 0 1 - 14;15 1 1 1 - 0;1 0 0 0 - 7;15 - 1 1 1 0;8 - 0 0 0 2;10 - 0 1 0 1;5 0 - 0 1 11;15 1 - 1 1 10;14 1 - 1 0 11;15;10;14 1 - 1 - 0;2 0 0 - 0 8;10 1 0 - 0 5;7 0 1 - 1 0;2;8;10 - 0 - 0 0;1 0 0 0 - 10;11 1 0 1 - 14;15 1 1 1 - 0 1 2 5 7 8 10 11 14 15 7;15 * * 0;8 * * 2;10 * * 1;5 * * 11;15;10;14 * * * * 0;2;8;10 * * * * 5;7 * * 0;1 * * 10;11 * * 14;15 * * 0 1 2 5 7 8 10 11 14 15 7;15 * * 0;8 * * 2;10 * * 1;5 * * 11;15;10;14 * * * *
0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 1 15 1 1 1 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 8 1 0 0 0 1 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 1 Gruppe 1 2 0 0 1 0 1 4 0 1 0 0 1 8 1 0 0 0 1 Gruppe 2 3 0 0 1 1 1 5 0 1 0 1 1 12 1 1 0 0 1 Gruppe 3 13 1 1 0 1 1 14 1 1 1 0 1 2;3 0 0 1 - 4;5 0 1 0 - 4;12 - 1 0 0 8;12 1 - 0 0 5;13 - 1 0 1 12;14 1 1 - 0 4;12 - 1 0 0 5;13 - 1 0 1 8;12 1 - 0 0 12;14 1 1 - 0 2;3 0 0 1 - 4;5 0 1 0 - 4;12;5;13 - 1 0 - 8;12 1 - 0 0 12;14 1 1 - 0 2;3 0 0 1 - 4;5 0 1 0 - 2 3 4 5 8 12 13 14 4;12;5;13 * * * * 8;12 * * 12;14 * * 2;3 * * 4;5 * * 2 3 4 5 8 12 13 14 4;12;5;13 * * * * 8;12 * * 12;14 * * 2;3 * *
0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 0 1 1 0 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 0 1 0 0 0 1 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 12 1 1 0 0 1 13 1 1 0 1 1 Gruppe 1 1 0 0 0 1 1 4 0 1 0 0 1 8 1 0 0 0 1 Gruppe 2 3 0 0 1 1 1 9 1 0 0 1 1 10 1 0 1 0 1 12 1 1 0 0 1 Gruppe 3 5 0 1 0 1 1 7 0 1 1 1 1 13 1 1 0 1 1 1;3 0 0 - 1 1;9 - 0 0 1 4;12 - 1 0 0 8;9 1 0 0 - 8;10 1 0 - 0 8;13 1 - 0 0 3;7 0 - 1 1 9;13 1 - 0 1 12;13 1 1 0 - 8;9 1 0 0 - 12;13 1 1 0 - 8;10 1 0 - 0 1;3 0 0 - 1 8;13 1 - 0 0 3;7 0 - 1 1 9;13 1 - 0 1 1;9 - 0 0 1 4;12 - 1 0 0 Gruppe 1 8;9 1 0 0 - Gruppe 2 12;13 1 1 0 - 8;9;12;13 1 - 0 - Gruppe 1 8;10 1 0 - 0 1;3 0 0 - 1 Grupp 1 8;13 1 - 0 0 Gruppe 2 9;13 1 - 0 1 3;7 0 - 1 1 8;13;9;13 1 - 0 - Gruppe 1 1;9 - 0 0 1 4;12 - 1 0 0 8;9;12;13 1 - 0 - 8;10 1 0 - 0 1;3 0 0 - 1 3;7 0 - 1 1 1;9 - 0 0 1 4;12 - 1 0 0 5 0 1 0 1 1 3 4 5 7 8 9 10 11 12 13 8;9;12;13 * * * * 8;10 * * 1;3 * * 3;7 * * 1;19 * * 4;12 * * 5 * 1 3 4 5 7 8 9 10 11 12 13 8;9;12;13 * * * * 8;10 * * 3;7 * * 1;19 * * 4;12 * * 5 *
0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 1 0 0 0 0 0 1 2 0 0 1 0 1 4 0 1 0 0 1 7 0 1 1 1 1 10 1 0 1 0 1 13 1 1 0 1 1 15 1 1 1 1 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 2 0 0 1 0 1 4 0 1 0 0 1 Gruppe 2 10 1 0 1 0 1 Gruppe 3 7 0 1 1 1 1 13 1 1 0 1 1 Gruppe 4 15 1 1 1 1 1 0;2 0 0 - 0 0;4 0 - 0 0 2;10 - 0 1 0 7;15 - 1 1 1 13;15 1 1 - 1 13;15 1 1 - 1 0;2 0 0 - 0 0;4 0 - 0 0 2;10 - 0 1 0 7;15 - 1 1 1 0 2 4 7 10 13 15 13;15 * * 0;2 * * 0;4 * * 2;10 * * 7;15 * * 0 2 4 7 10 13 15 13;15 * * 0;4 * * 2;10 * * 7;15 * * y := (d and c and a) or (not d and not b and not a) or (not c and b and not a) or (c and b and a)
0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 4 0 1 0 0 1 5 0 1 0 1 1 8 1 0 0 0 1 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 1 13 1 1 0 1 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 1 0 0 0 1 1 4 0 1 0 0 1 8 1 0 0 0 1 Gruppe 2 5 0 1 0 1 1 10 1 0 1 0 1 12 1 1 0 0 1 Gruppe 3 11 1 0 1 1 1 13 1 1 0 1 1 0;1 0 0 0 - 0;4 0 - 0 0 0;8 - 0 0 0 1;5 0 - 0 1 8;10 1 0 - 0 8;12 1 - 0 0 5;13 - 1 0 1 10:11 1 0 1 - 12;13 1 1 0 - 0;8 - 0 0 0 5;13 - 1 0 1 8;12 1 - 0 0 1;5 0 - 0 1 0;4 0 - 0 0 8;10 1 0 - 0 0;1 0 0 0 - 10:11 1 0 1 - 12;13 1 1 0 - 0;8 - 0 0 0 5;13 - 1 0 1 Gruppe 0 0;4 0 - 0 0 Gruppe 1 8;12 1 - 0 0 1;5 0 - 0 1 8;10 1 0 - 0 Gruppe 0 0;1 0 0 0 - Gruppe 2 10:11 1 0 1 - 12;13 1 1 0 - 0;8 - 0 0 0 5;13 - 1 0 1 Gruppe 0 0;4 0 - 0 0 Gruppe 1 8;12 1 - 0 0 1;5 0 - 0 1 0;4;8;12 - - 0 0 0;4;1;5 0 - 0 - 8;10 1 0 - 0 Gruppe 0 0;1 0 0 0 - Gruppe 2 10:11 1 0 1 - 12;13 1 1 0 - 0;8 - 0 0 0 5;13 - 1 0 1 0;4;8;12 - - 0 0 0;4;1;5 0 - 0 - 8;10 1 0 - 0 0;1 0 0 0 - 10:11 1 0 1 - 12;13 1 1 0 - y := (not c and not b and not a) or (c and not b and a) or (not b and not a) or (not d and not b) or (d and not c and a) or (not d and not c and not b) or (d and not c and b) or (d and c and not b) 0 1 4 5 8 10 11 12 13 0;8 * * 5;13 * * 0;4;8;12 * * * * 0;4;1;5 * * * * 8;10 * * 0;1 * * 10;11 * * 12;13 * * 0 1 4 5 8 10 11 12 13 5;13 * * 0;4;8;12 * * * * 0;4;1;5 * * * * 8;10 * * 10;11 * * 5;13 - 1 0 1 0;4;8;12 - - 0 0 0;4;1;5 0 - 0 - 8;10 1 0 - 0 10:11 1 0 1 - y := (c and not b and a) or (not b and not a) or (not d and not b) or (d and not c and not a) or (d and not c and b)
0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 0 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 1 15 1 1 1 1 1 0 0 0 0 0 1 3 0 0 1 1 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 0 1 1 1 14 1 1 1 0 1 15 1 1 1 1 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 8 1 0 0 0 1 Gruppe 2 3 0 0 1 1 1 5 0 1 0 1 1 6 0 1 1 0 1 9 1 0 0 1 1 10 1 0 1 0 1 Gruppe 3 7 0 1 1 1 1 11 1 0 1 1 1 14 1 1 1 0 1 Gruppe 4 15 1 1 1 1 1 0;8 - 0 0 0 8;9 1 0 0 - 8;10 1 0 - 0 3;7 0 - 1 1 5;7 0 1 - 1 6;7 0 1 1 - 10;11 1 0 1 - 10;14 1 - 1 0 9;11 1 0 - 1 7;15 - 1 1 1 11;15 1 - 1 1 14;15 1 1 1 - 0;8 - 0 0 0 7;15 - 1 1 1 3;7 0 - 1 1 10;14 1 - 1 0 11;15 1 - 1 1 5;7 0 1 - 1 9;11 1 0 - 1 8;10 1 0 - 0 8;9 1 0 0 - 6;7 0 1 1 - 10;11 1 0 1 - 14;15 1 1 1 - Gruppe 0 0;8 - 0 0 0 Gruppe 3 7;15 - 1 1 1 Gruppe 2 3;7 0 - 1 1 10;14 1 - 1 0 Gruppe 3 11;15 1 - 1 1 Gruppe 1 8;10 1 0 - 0 Gruppe 2 5;7 0 1 - 1 9;11 1 0 - 1 Gruppe 1 8;9 1 0 0 - Gruppe 2 6;7 0 1 1 - 10;11 1 0 1 - Gruppe 3 14;15 1 1 1 - Gruppe 0 0;8 - 0 0 0 Gruppe 3 7;15 - 1 1 1 Gruppe 2 3;7 0 - 1 1 10;14 1 - 1 0 Gruppe 3 11;15 1 - 1 1 3;7;11;15 - - 1 1 10;14;11;15 1 - 1 - Gruppe 1 8;10 1 0 - 0 Gruppe 2 5;7 0 1 - 1 9;11 1 0 - 1 5;7 0 1 - 1 8;10;9;11 1 0 - - Gruppe 1 8;9 1 0 0 - Gruppe 2 6;7 0 1 1 - 10;11 1 0 1 - Gruppe 3 14;15 1 1 1 - 8;9;10;11 1 0 - - 6;7;14;15 - 1 1 - 10;11;14;15 1 - 1 - 0;8 - 0 0 0 7;15 - 1 1 1 3;7;11;15 - - 1 1 10;14;11;15 1 - 1 - 5;7 0 1 - 1 8;10;9;11 1 0 - - 8;9;10;11 1 0 - - 6;7;14;15 - 1 1 - 10;11;14;15 1 - 1 - 0 3 5 6 7 8 9 10 11 14 15 0;8 * * 7;15 * * 3;7;11;15 * * * * 10;14;11;15 * * * * 5;7 * * 8;10;9;11 * * * * 6;7;14;15 * * * * 0 3 5 6 7 8 9 10 11 14 15 0;8 * * 3;7;11;15 * * * * 5;7 * * 8;10;9;11 * * * * 6;7;14;15 * * * * y := (not c and not b and not a) or (b and ) or (not d and b and a) or (d and not c) or (d and b)
0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 1 14 1 1 1 0 1 15 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 13 1 1 0 1 1 14 1 1 1 0 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 1 0 0 0 1 1 Gruppe 2 6 0 1 1 0 1 Gruppe 3 7 0 1 1 1 1 13 1 1 0 1 1 14 1 1 1 0 1 0;1 0 0 0 - 6;7 0 1 1 - 13 1 1 0 1 6;14 - 1 1 0 y := (not d and not c and not b) or (not d and c and b) or (d and c and not b and a) or (c and b and not a)
0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 1 12 1 1 0 0 1 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 0 0 0 0 0 0 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 11 1 0 1 1 1 12 1 1 0 0 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 4 0 1 0 0 1 Gruppe 2 5 0 1 0 1 1 6 0 1 1 0 1 12 1 1 0 0 1 Gruppe 3 7 0 1 1 1 1 11 1 0 1 1 1 0;4 0 - 0 0 4;5 0 1 0 - 4;6 0 1 - 0 4;12 - 1 0 0 5;7 0 1 - 1 6;7 0 1 1 - 12 1 1 0 0 11 1 0 1 1 4;5 0 1 0 - 6;7 0 1 1 - 5;7 0 1 - 1 4;6 0 1 - 0 0;4 0 - 0 0 4;12 - 1 0 0 12 1 1 0 0 11 1 0 1 1 Gruppe 1 4;5 0 1 0 - Gruppe 2 6;7 0 1 1 - 4;5;6;7 0 1 - - Gruppe 1 4;6 0 1 - 0 Gruppe 2 5;7 0 1 - 1 4;6;5;7 0 1 - - 0;4 0 - 0 0 4;12 - 1 0 0 12 1 1 0 0 11 1 0 1 1 Gruppe 1 4;5 0 1 0 - Gruppe 2 6;7 0 1 1 - 4;5;6;7 0 1 - - Gruppe 1 4;6 0 1 - 0 Gruppe 2 5;7 0 1 - 1 4;6;5;7 0 1 - - 0;4 0 - 0 0 4;12 - 1 0 0 11 1 0 1 1 4;6;5;7 0 1 - - 0 4 5 6 7 11 12 0;4 * * 4;12 * * 11 * 4;5;6;7 * * * * y := (not d and not b and not a) or (c and not b and not a) or (d and not c and b and a) or (not d and c)
b a x b a y 0 0 0 0 0 0 0 1 0 0 1 1 0 0 2 0 1 0 1 0 1 3 0 1 1 0 1 1 4 1 0 0 0 0 0 5 1 0 1 1 1 1 6 1 1 0 0 0 1 7 1 1 1 1 1 0 b a x b 0 0 0 0 0 1 0 0 1 1 2 0 1 0 1 3 0 1 1 0 4 1 0 0 0 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 b a x a 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 3 0 1 1 1 4 1 0 0 0 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 b a x y 0 0 0 0 0 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 1 6 1 1 0 1 7 1 1 1 0 b a x b 1 0 0 1 1 2 0 1 0 1 5 1 0 1 1 7 1 1 1 1 b a x a 3 0 1 1 1 5 1 0 1 1 7 1 1 1 1 b a x y 2 0 1 0 1 3 0 1 1 1 5 1 0 1 1 6 1 1 0 1 b a x b Gruppe 1 1 0 0 1 1 2 0 1 0 1 Gruppe 2 5 1 0 1 1 Gruppe 3 7 1 1 1 1 b a x a Gruppe 2 3 0 1 1 1 5 1 0 1 1 Gruppe 3 7 1 1 1 1 b a x y Gruppe 1 2 0 1 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 6 1 1 0 1 b a x b Gruppe 1 1 0 0 1 1 2 0 1 0 1 Gruppe 2 5 1 0 1 1 Gruppe 3 7 1 1 1 1 1;5 - 0 1 2 0 1 0 5;7 1 - 1 b := (not a and x) or (not b and a and not x) or (b and x) b a x a Gruppe 2 3 0 1 1 1 5 1 0 1 1 Gruppe 3 7 1 1 1 1 3;7 - 1 1 5;7 1 - 1 a := (a and x) or (b and x) b a x y Gruppe 1 2 0 1 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 6 1 1 0 1 2;3 0 1 - 5 1 0 1 2;6 - 1 0 y := (not b and a) or (b and not a and x) or (a and not x) b := (not a and x) or (not b and a and not x) or (b and x) a := (a and x) or (b and x) y := (not b and a) or (b and not a and x) or (a and not x)
b := (b and not x) or (not b and a and x) or (b and a and not x) a := (b and not a and x) or (b and not a and not x) or (not b and a and not x) or (b and a and x) y := (not a and not x) or (not a and b) or (b and x) Wahrheitstabelle b a x b a y 0 0 0 0 0 0 1 1 0 0 1 0 0 0 2 0 1 0 0 1 0 3 0 1 1 1 0 0 4 1 0 0 1 1 1 5 1 0 1 0 1 1 6 1 1 0 1 0 0 7 1 1 1 0 1 1
b a x b a y 0 0 0 0 0 0 1 1 0 0 1 0 1 0 2 0 1 0 1 1 1 3 0 1 1 0 0 1 4 1 0 0 1 1 0 5 1 0 1 1 0 0 6 1 1 0 1 0 1 7 1 1 1 0 1 0 b a x b 0 0 0 0 0 1 0 0 1 0 2 0 1 0 1 3 0 1 1 0 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 0 b a x a 0 0 0 0 0 1 0 0 1 1 2 0 1 0 1 3 0 1 1 0 4 1 0 0 1 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 b a x y 0 0 0 0 1 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 1 7 1 1 1 0 b a x b 2 0 1 0 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 b a x a 1 0 0 1 1 2 0 1 0 1 4 1 0 0 1 7 1 1 1 1 b a x y 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 6 1 1 0 1 b a x b Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 5 1 0 1 1 6 1 1 0 1 b a x a Gruppe 1 1 0 0 1 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 7 1 1 1 1 b a x y Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 Gruppe 2 3 0 1 1 1 6 1 1 0 1 b a x b Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 5 1 0 1 1 6 1 1 0 1 2;6 - 1 0 4;5 1 - 0 b := (a and not x) or (b and not x) b a x a Gruppe 1 1 0 0 1 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 7 1 1 1 1 a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x) b a x y Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 Gruppe 2 3 0 1 1 1 6 1 1 0 1 0;2 0 - 0 2;3 0 1 - 2;6 - 1 0 y := (not b and not x) or (not b and a) or (a and not x) b := (a and not x) or (b and not x) a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x) y := (not b and not x) or (not b and a) or (a and not x)
Ich baue heute abend wieder eine Schaltung. Da ich nicht so viel Platz auf den Platinen habe - mache ich das so - ich baue folgende Schaltungen, zu folgenden Schaltwerken 00 01 01 10 10 11 11 00 00 10 01 00 10 11 11 Sie sehen, das sind gar nicht mal so wenige. Das sind sogar eine Menge. Ich baue nur autonome Schaltwerke mit zwei Flip Flops. Jetzt mal das erste. ba ba 00 01 01 10 10 11 11 00 ba b 00 0 01 1 10 1 11 0 ba a 00 1 01 0 10 1 11 0 b := (not b and a) or (b and not a) a := (not b)
b a x b a y 1 0 0 0 0 0 1 2 0 0 1 0 1 0 3 0 1 0 1 1 0 4 0 1 1 1 0 1 5 1 0 0 1 1 0 6 1 0 1 0 0 1 7 1 1 0 1 1 0 8 1 1 1 0 0 0 b a x b 1 0 0 0 0 2 0 0 1 0 3 0 1 0 1 4 0 1 1 1 5 1 0 0 1 6 1 0 1 0 7 1 1 0 1 8 1 1 1 0 b a x a 1 0 0 0 0 2 0 0 1 1 3 0 1 0 1 4 0 1 1 0 5 1 0 0 1 6 1 0 1 0 7 1 1 0 1 8 1 1 1 0 b a x y 1 0 0 0 1 2 0 0 1 0 3 0 1 0 0 4 0 1 1 1 5 1 0 0 0 6 1 0 1 1 7 1 1 0 0 8 1 1 1 0 b a x b 3 0 1 0 1 4 0 1 1 1 5 1 0 0 1 7 1 1 0 1 b a x a 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 7 1 1 0 1 b a x y 1 0 0 0 1 4 0 1 1 1 6 1 0 1 1 b a x b Gruppe 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 b a x a Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 7 1 1 0 1 b a x y Gruppe 0 1 0 0 0 1 Gruppe 2 4 0 1 1 1 6 1 0 1 1 b a x b Gruppe 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 3;7 - 1 0 5;7 1 - 0 3;4 0 1 - b a x a Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 7 1 1 0 1 2 0 0 1 3;7 - 1 0 5;7 1 - "s b a x y Gruppe 0 1 0 0 0 1 Gruppe 2 4 0 1 1 1 6 1 0 1 1 b a x b Gruppe 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 3;7 - 1 0 5;7 1 - 0 3;4 0 1 - b := (a and not x) or (b and not x) or (not b and a) b a x a Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 7 1 1 0 1 2 0 0 1 3;7 - 1 0 5;7 1 - 0 a := (not b and not a and x) or (a and not x) or (b and not x) b a x y Gruppe 0 1 0 0 0 1 Gruppe 2 4 0 1 1 1 6 1 0 1 1 y := (not b and not a and not x) or (not b and a and x) or (b and not a and x) b := (a and not x) or (b and not x) or (not b and a) a := (not b and not a and x) or (a and not x) or (b and not x) y := (not b and not a and not x) or (not b and a and x) or (b and not a and x)
bax bay 1 000 001 2 001 010 3 010 111 4 011 001 5 100 110 6 101 100 7 110 101 8 111 010 bax b 1 000 0 2 001 0 3 010 1 4 011 0 5 100 1 6 101 1 7 110 1 8 111 0 bax a 1 000 0 2 001 1 3 010 1 4 011 0 5 100 1 6 101 0 7 110 0 8 111 1 bax y 1 000 1 2 001 0 3 010 1 4 011 1 5 100 0 6 101 0 7 110 1 8 111 0 bax b 3 010 1 5 100 1 6 101 1 7 110 1 bax a 2 001 1 3 010 1 5 100 1 8 111 1 bax y 1 000 1 3 010 1 4 011 1 7 110 1 bax b Gruppe 1 3 010 1 5 100 1 Gruppe 2 6 101 1 7 110 1 bax a Gruppe 1 2 001 1 3 010 1 5 100 1 Gruppe 3 8 111 1 bax y Gruppe 0 1 000 1 Gruppe 1 3 010 1 Gruppe 2 4 011 1 7 110 1 bax b Gruppe 1 3 010 1 5 100 1 Gruppe 2 6 101 1 7 110 1 5;6 1 0 - 5;7 1 - 0 3;7 - 1 0 b := (b and not a) or (b and not x) or (a and not x) bax a Gruppe 1 2 001 1 3 010 1 5 100 1 Gruppe 3 8 111 1 a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x) bax y Gruppe 0 1 000 1 Gruppe 1 3 010 1 Gruppe 2 4 011 1 7 110 1 3;4 0 1 - 1;3 0 - 0 3;7 - 1 0 y := (not b and a) or (not b and not x) or (a and not x) b := (b and not a) or (b and not x) or (a and not x) a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x) y := (not b and a) or (not b and not x) or (a and not x)
b := (not b and not a) or (b and a) or (not b and not x) or (not x) a := b and x y := (not b and not a) or (b and a and not x) b a x b a y 0 0 0 0 1 0 1 1 0 0 1 1 0 1 2 0 1 0 1 0 0 3 0 1 1 0 0 0 4 1 0 0 1 0 0 5 1 0 1 0 1 0 6 1 1 0 1 0 1 7 1 1 1 1 1 0
b a x b a y 1 0 0 0 0 1 1 2 0 0 1 0 1 1 3 0 1 0 0 0 0 4 0 1 1 1 0 1 5 1 0 0 0 0 1 6 1 0 1 0 1 0 7 1 1 0 1 1 1 8 1 1 1 1 1 0 b a x b 1 0 0 0 0 2 0 0 1 0 3 0 1 0 0 4 0 1 1 1 5 1 0 0 0 6 1 0 1 0 7 1 1 0 1 8 1 1 1 1 b a x a 1 0 0 0 1 2 0 0 1 1 3 0 1 0 0 4 0 1 1 0 5 1 0 0 0 6 1 0 1 1 7 1 1 0 1 8 1 1 1 1 b a x y 1 0 0 0 1 2 0 0 1 1 3 0 1 0 0 4 0 1 1 1 5 1 0 0 1 6 1 0 1 0 7 1 1 0 1 8 1 1 1 0 b a x b 4 0 1 1 1 7 1 1 0 1 8 1 1 1 1 b a x a 1 0 0 0 1 2 0 0 1 1 6 1 0 1 1 7 1 1 0 1 8 1 1 1 1 b a x y 1 0 0 0 1 2 0 0 1 1 4 0 1 1 1 5 1 0 0 1 7 1 1 0 1 b a x b Gruppe 2 4 0 1 1 1 7 1 1 0 1 Gruppe 3 8 1 1 1 1 b a x a Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 Gruppe 2 6 1 0 1 1 7 1 1 0 1 Gruppe 3 8 1 1 1 1 b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 5 1 0 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 b a x b Gruppe 2 4 0 1 1 1 7 1 1 0 1 Gruppe 3 8 1 1 1 1 4;8 - 1 1 7;8 1 1 - b := (a and x) or (b and a) b a x a Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 Gruppe 2 6 1 0 1 1 7 1 1 0 1 Gruppe 3 8 1 1 1 1 1;2 0 0 - 2;6 - 0 1 6;8 1 - 1 7;8 1 1 - a := (not b and not a) or (not a and x) or (b and x) or (b and a) b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 5 1 0 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 1;2 0 0 - 1;5 - 0 0 2;4 0 - 1 5;7 1 - 0 y := (not b and not a) or (not a and not x) or (not b and x) or (b and not x) b := (a and x) or (b and a) a := (not b and not a) or (not a and x) or (b and x) or (b and a) y := (not b and not a) or (not a and not x) or (not b and x) or (b and not x)
b a x b a y 1 0 0 0 1 0 1 2 0 0 1 1 1 1 3 0 1 0 0 0 1 4 0 1 1 0 1 0 5 1 0 0 1 0 0 6 1 0 1 1 1 0 7 1 1 0 0 1 1 8 1 1 1 1 0 1 b a x b 1 0 0 0 1 2 0 0 1 1 3 0 1 0 0 4 0 1 1 0 5 1 0 0 1 6 1 0 1 1 7 1 1 0 0 8 1 1 1 1 b a x a 1 0 0 0 0 2 0 0 1 1 3 0 1 0 0 4 0 1 1 1 5 1 0 0 0 6 1 0 1 1 7 1 1 0 1 8 1 1 1 0 b a x y 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 4 0 1 1 0 5 1 0 0 0 6 1 0 1 0 7 1 1 0 1 8 1 1 1 1 b a x b 1 0 0 0 1 2 0 0 1 1 5 1 0 0 1 6 1 0 1 1 8 1 1 1 1 b a x a 2 0 0 1 1 4 0 1 1 1 6 1 0 1 1 7 1 1 0 1 b a x y 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 7 1 1 0 1 8 1 1 1 1 b a x b Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 5 1 0 0 1 Gruppe 2 6 1 0 1 1 Gruppe 3 8 1 1 1 1 b a x a Gruppe 1 2 0 0 1 1 Gruppe 2 4 0 1 1 1 6 1 0 1 1 7 1 1 0 1 b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 3 0 1 0 1 Gruppe 2 7 1 1 0 1 Gruppe 3 8 1 1 1 1 b a x b Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 5 1 0 0 1 Gruppe 2 6 1 0 1 1 Gruppe 3 8 1 1 1 1 1;2 0 0 - 1;5 - 0 0 2;6 - 0 1 5;6 1 0 - 6;8 1 - 0 1;5 - 0 0 2;6 - 0 1 1;2 0 0 - 5;6 1 0 - 6;8 1 - 0 1;5;2;5 - 0 - 1;2;5;6 - 0 - 6;8 1 - 0 b := (not a) or (b and not x) b a x a Gruppe 1 2 0 0 1 1 Gruppe 2 4 0 1 1 1 6 1 0 1 1 7 1 1 0 1 2;4 0 - 1 2;6 - 0 1 7 1 1 0 a := (not b and x) or (not a and x) or (b and a and not x) b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 3 0 1 0 1 Gruppe 2 7 1 1 0 1 Gruppe 3 8 1 1 1 1 1;2 0 0 - 1;3 0 - 0 3;7 - 1 0 7;8 1 1 - y := (not b and not a) or (not b and not x) or (a and not x) or (b and a) b := (not a) or (b and not x) a := (not b and x) or (not a and x) or (b and a and not x) y := (not b and not a) or (not b and not x) or (a and not x) or (b and a)
b a x b a y 1 0 0 0 0 0 0 2 0 0 1 0 1 0 3 0 1 0 0 0 1 4 0 1 1 1 0 1 5 1 0 0 0 0 1 6 1 0 1 0 1 1 7 1 1 0 1 0 1 8 1 1 1 0 0 1 b a x b 1 0 0 0 0 2 0 0 1 0 3 0 1 0 0 4 0 1 1 1 5 1 0 0 0 6 1 0 1 0 7 1 1 0 1 8 1 1 1 0 b a x a 1 0 0 0 0 2 0 0 1 1 3 0 1 0 0 4 0 1 1 0 5 1 0 0 0 6 1 0 1 1 7 1 1 0 0 8 1 1 1 0 b a x y 1 0 0 0 0 2 0 0 1 0 3 0 1 0 1 4 0 1 1 1 5 1 0 0 1 6 1 0 1 1 7 1 1 0 1 8 1 1 1 1 b a x b 4 0 1 1 1 7 1 1 0 1 b a x a 2 0 0 1 1 6 1 0 1 1 b a x y 3 0 1 0 1 4 0 1 1 1 5 1 0 0 1 6 1 0 1 1 7 1 1 0 1 8 1 1 1 1 b a x b Gruppe 2 4 0 1 1 1 7 1 1 0 1 b := (not b and a and x) or (b and a and not x) b a x a Gruppe 1 2 0 0 1 1 Gruppe 2 6 1 0 1 1 2;6 - 0 1 a := (not a and x) b a x y Gruppe 1 5 1 0 0 1 3 0 1 0 1 Gruppe 2 4 0 1 1 1 6 1 0 1 1 7 1 1 0 1 Gruppe 3 8 1 1 1 1 5;6 1 0 - 5;7 1 - 0 3;4 0 1 - 3;7 - 1 0 4;8 - 1 1 4;6 1 - 1 7;8 1 1 - 5;6 1 0 - 3;4 0 1 - 7;8 1 1 - 4;6 1 - 1 5;7 1 - 0 3;7 - 1 0 4;8 - 1 1 Gruppe 1 5;6 1 0 - 3;4 0 1 - Gruppe 2 7;8 1 1 - 5;6;3;4 1 - - 3;4;7;8 - 1 - Gruppe 1 5;7 1 - 0 Gruppe 2 4;6 1 - 1 4;6;5;7 1 - - Gruppe 1 3;7 - 1 0 Gruppe 2 4;8 - 1 1 3;7;4;8 - 1 - 5;6;3;4 1 - - 3;4;7;8 - 1 - y := b or a b := (not b and a and x) or (b and a and not x) a := (not a and x) y := b or a
c b a c b a 0 0 0 0 0 1 1 1 0 0 1 0 0 0 2 0 1 0 1 1 1 3 0 1 1 0 0 1 4 1 0 0 1 0 1 5 1 0 1 1 1 1 6 1 1 0 0 1 1 7 1 1 1 1 0 0 c b a c 0 0 0 0 0 1 0 0 1 0 2 0 1 0 1 3 0 1 1 0 4 1 0 0 1 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 c b a b 0 0 0 0 1 1 0 0 1 0 2 0 1 0 1 3 0 1 1 0 4 1 0 0 0 5 1 0 1 1 6 1 1 0 1 7 1 1 1 0 c b a a 0 0 0 0 1 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 0 c b a c 2 0 1 0 1 4 1 0 0 1 5 1 0 1 1 7 1 1 1 1 c b a b 0 0 0 0 1 2 0 1 0 1 5 1 0 1 1 6 1 1 0 1 c b a a 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 c b a c Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 5 1 0 1 1 Gruppe 3 7 1 1 1 1 c b a b Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 Gruppe 2 5 1 0 1 1 6 1 1 0 1 c b a a Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 6 1 1 0 1 c b a c Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 5 1 0 1 1 Gruppe 3 7 1 1 1 1 2 0 1 0 4;5 1 0 - 4;7 1 - 1 a := (not c and b and not a) or (c and not b) or (c and a) c b a b Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 Gruppe 2 5 1 0 1 1 6 1 1 0 1 0;2 0 - 0 5 1 0 1 2;6 - 1 0 b := (not c and not a) or (c and not b and a) or (b and not a) c b a a Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 6 1 1 0 1 0;2 0 - 0 0;4 - 0 0 2;3 0 1 - 2;6 - 1 0 4;5 1 0 - 4;6 1 - 0 2;6 - 1 0 0;4 - 0 0 4;6 1 - 0 0;2 0 - 0 2;3 0 1 - 4;5 1 0 - 2;6;0;4 - - 0 0;6;0;2 - - 0 2;3 0 1 - 4;5 1 0 - 2;6;0;4 - - 0 2;3 0 1 - 4;5 1 0 - c := (not a) or (not c and b) or (c and not b) a := (not c and b and not a) or (c and not b) or (c and a) b := (not c and not a) or (c and not b and a) or (b and not a) c := (not a) or (not c and b) or (c and not b)
000 0 001 000 1 010 001 0 011 001 1 100 010 0 101 010 1 110 001 0 000 001 1 000 100 0 000 100 1 000 101 0 000 101 1 000 110 0 000 110 1 000 000 0 0 000 1 0 001 0 0 001 1 1 010 0 1 010 1 1 000 0 0 000 1 1 001 0 1 001 1 0 010 0 0 010 1 1 000 0 1 000 1 0 001 0 1 001 1 0 010 0 1 010 1 0 001 1 1 010 0 1 010 1 1 000 1 1 001 0 1 010 1 1 000 0 1 001 0 1 010 0 1 Gruppe 1 0 010 0 1 Gruppe 2 1 001 1 1 2 010 1 1 1 001 1 1 0;2 010 - 1 c = (not c and not b and a and x) or (not c and b and not a) -------------------- Gruppe 2 0 000 1 1 1 001 0 1 Gruppe 3 3 010 1 1 1 001 0 1 0;3 0-0 1 1 b = (not c and not b and a and not x) or (not c and not a and x) -------------------- Gruppe 1 0 000 0 1 Gruppe 2 1 001 0 1 2 010 0 1 0;1 00-0 1 0;2 0-00 1 a = (not c and not b and not x) or (not c and not a and not x) c = (not c and not b and a and x) or (not c and b and not a) b = (not c and not b and a and not x) or (not c and not a and x) a = (not c and not b and not x) or (not c and not a and not x)
0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 b a x b a y 1 0 0 0 0 1 1 2 0 0 1 0 1 1 3 0 1 0 1 1 1 4 0 1 1 1 0 1 5 1 0 0 0 1 1 6 1 0 1 0 0 0 7 1 1 0 1 0 1 8 1 1 1 1 1 1 b a x b 1 0 0 0 0 2 0 0 1 0 3 0 1 0 1 4 0 1 1 1 5 1 0 0 0 6 1 0 1 0 7 1 1 0 1 8 1 1 1 1 b a x a 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 4 0 1 1 0 5 1 0 0 1 6 1 0 1 0 7 1 1 0 0 8 1 1 1 1 b a x y 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 4 0 1 1 1 5 1 0 0 1 6 1 0 1 0 7 1 1 0 1 8 1 1 1 1 b a x b 3 0 1 0 1 4 0 1 1 1 7 1 1 0 1 8 1 1 1 1 b a x a 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 8 1 1 1 1 b a x y 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 4 0 1 1 1 5 1 0 0 1 7 1 1 0 1 8 1 1 1 1 b a x b Gruppe 1 3 0 1 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 Gruppe 3 8 1 1 1 1 3;4 0 1 - 4;8 - 1 1 7;8 1 1 - b := (not b and a) or (a and x) or (b and a) b a x a 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 8 1 1 1 1 b a x a Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 3 8 1 1 1 1 1;2 0 0 - 1;3 0 - 0 1;5 - 0 0 8 1 1 1 a := (not b and not a) or (not b and not x) or (not a and not x) or (b and a and x) b a x y 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 4 0 1 1 1 5 1 0 0 1 7 1 1 0 1 8 1 1 1 1 b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 Gruppe 3 8 1 1 1 1 1;2 0 0 - 1;3 0 - 0 1;5 - 0 0 2;4 0 - 1 3;4 0 1 - 3;7 - 1 0 5;7 1 - 0 4;8 - 1 1 7;8 1 1 - 1;2 0 0 - 3;4 0 1 - 7;8 1 1 - 5;7 1 - 0 2;4 0 - 1 1;3 0 - 0 3;7 - 1 0 4;8 - 1 1 1;5 - 0 0 1;2;3;4 0 - - 3;4;7;8 - 1 - 5;7;1;3 - - 0 2;4;1;3 0 - - 1;5;3;7 - - 0 3;7;4;8 - 1 - 1;2;3;4 0 - - 2;4;1;3 0 - - 3;4;7;8 - 1 - 3;7;4;8 - 1 - 5;7;1;3 - - 0 1;5;3;7 - - 0 1;2;3;4 0 - - 3;4;7;8 - 1 - 1;5;3;7 - - 0 y := not b or a or not x b := (not b and a) or (a and x) or (b and a) a := (not b and not a) or (not b and not x) or (not a and not x) or (b and a and x) y := not b or a or not x
b a x b a y 0 0 0 0 1 0 1 1 0 0 1 1 1 1 2 0 1 0 1 1 1 3 0 1 1 1 1 1 4 1 0 0 1 0 1 5 1 0 1 0 0 1 6 1 1 0 0 0 0 7 1 1 1 1 1 1 b a x b 0 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 b a x a 0 0 0 0 0 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 b a x y 0 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 b a x b 0 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 7 1 1 1 1 b a x a 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 7 1 1 1 1 b a x y 0 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 7 1 1 1 1 b a x b Gruppe 0 0 0 0 0 1 Gruppe 1 1 0 0 1 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 Gruppe 3 7 1 1 1 1 b a x a Gruppe 1 1 0 0 1 1 2 0 1 0 1 Gruppe 2 3 0 1 1 1 Gruppe 3 7 1 1 1 1 b a x y Gruppe 0 0 0 0 0 1 Gruppe 1 1 0 0 1 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 Gruppe 3 7 1 1 1 1 b a x b Gruppe 0 0 0 0 0 1 Gruppe 1 1 0 0 1 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 Gruppe 3 7 1 1 1 1 0;1 0 0 - 0;2 0 - 0 0;4 - 0 0 1;3 0 - 1 2;3 0 1 - 3;7 - 1 1 0;1 0 0 - 2;3 0 1 - 0;2 0 - 0 1;3 0 - 1 0;4 - 0 0 3;7 - 1 1 0;1;2;3 0 - - 1;3;0;2 0 - - 0;4 - 0 0 3;7 - 1 1 0;1;2;3 0 - - 0;4 - 0 0 3;7 - 1 1 b := (not b) or (not a and not x) or (a and x) b a x a Gruppe 1 1 0 0 1 1 2 0 1 0 1 Gruppe 2 3 0 1 1 1 Gruppe 3 7 1 1 1 1 1;3 0 - 1 2;3 0 1 - 3;7 - 1 1 a := (not b and x) or (not b and a) or (a and x) b a x y Gruppe 0 0 0 0 0 1 Gruppe 1 1 0 0 1 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 Gruppe 3 7 1 1 1 1 0;1 0 0 - 0;2 0 - 0 0;4 - 0 0 1;3 0 - 1 1;5 - 0 1 2;3 0 1 - 7;5 1 0 - 3;7 - 1 1 5;7 1 - 1 0;4 - 0 0 1;5 - 0 1 3;7 - 1 1 0;2 0 - 0 1;3 0 - 1 5;7 1 - 1 2;3 0 1 - 7;5 1 0 - 0;1 0 0 - 0;4 - 0 0 1;5 - 0 1 3;7 - 1 1 0;4;1;5 - 0 - 1;5;3;7 - - 1 0;2 0 - 0 1;3 0 - 1 5;7 1 - 1 0;2;1;3 0 - 1 1;3;5;7 - 0 1 0;1 0 0 - 2;3 0 1 - 7;5 1 0 - 0;1;2;3 0 - - 0;1;7;5 - 0 - 0 1 2 3 4 5 7 0;4;1;5 * * * * 1;5;3;7 * * * * 0;2;1;3 * * * * 1;3;5;7 * * * * 0;1;2;3 * * * * 0;1;7;5 * * * * 0 1 2 3 4 5 7 0;4;1;5 * * * * 1;5;3;7 * * * * 0;2;1;3 * * * * y := (not a) or (not a and x) or (not b and x) b := (not b) or (not a and not x) or (a and x) a := (not b and x) or (not b and a) or (a and x) y := (not a) or (not a and x) or (not b and x)
b a x b a y 1 0 0 0 0 0 1 2 0 0 1 0 1 0 3 0 1 0 1 1 1 4 0 1 1 0 0 1 5 1 0 0 1 1 0 6 1 0 1 1 0 0 7 1 1 0 1 0 1 8 1 1 1 0 1 0 b a x b 1 0 0 0 0 2 0 0 1 0 3 0 1 0 1 4 0 1 1 0 5 1 0 0 1 6 1 0 1 1 7 1 1 0 1 8 1 1 1 0 b a x a 1 0 0 0 0 2 0 0 1 1 3 0 1 0 1 4 0 1 1 0 5 1 0 0 1 6 1 0 1 0 7 1 1 0 0 8 1 1 1 1 b a x y 1 0 0 0 1 2 0 0 1 0 3 0 1 0 1 4 0 1 1 1 5 1 0 0 0 6 1 0 1 0 7 1 1 0 1 8 1 1 1 0 b a x b 3 0 1 0 1 5 1 0 0 1 6 1 0 1 1 7 1 1 0 1 b a x a 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 8 1 1 1 1 b a x y 1 0 0 0 1 3 0 1 0 1 4 0 1 1 1 7 1 1 0 1 b a x b Gruppe 1 3 0 1 0 1 Gruppe 2 5 1 0 0 1 6 1 0 1 1 7 1 1 0 1 b a x a Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 3 8 1 1 1 1 b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 3 0 1 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 b a x b Gruppe 1 3 0 1 0 1 Gruppe 2 5 1 0 0 1 6 1 0 1 1 7 1 1 0 1 3;7 - 1 0 6 1 0 1 7 1 1 0 b := (a and not x) or (b and not a and x) or (b and a and not x) b a x a Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 3 8 1 1 1 1 2 0 0 1 3 0 1 0 5 1 0 0 8 1 1 1 a := (not b and not a and x) or (not b and a and not x) or (b and not and not x) or (b and a and x) b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 3 0 1 0 1 Gruppe 2 4 0 1 1 1 7 1 1 0 1 1;3 0 - 0 3;4 0 1 - 3;7 - 1 0 x := (not b and not x) or (not b and a) or (a and not x) b := (a and not x) or (b and not a and x) or (b and a and not x) a := (not b and not a and x) or (not b and a and not x) or (b and not and not x) or (b and a and x) x := (not b and not x) or (not b and a) or (a and not x)
b a x b a y 1 0 0 0 1 0 1 2 0 0 1 1 0 1 3 0 1 0 1 0 0 4 0 1 1 0 0 0 5 1 0 0 1 0 0 6 1 0 1 0 1 0 7 1 1 0 1 0 1 8 1 1 1 1 1 0 b a x b 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 4 0 1 1 0 5 1 0 0 1 6 1 0 1 0 7 1 1 0 1 8 1 1 1 1 b a x a 1 0 0 0 0 2 0 0 1 0 3 0 1 0 0 4 0 1 1 0 5 1 0 0 0 6 1 0 1 1 7 1 1 0 0 8 1 1 1 1 b a x y 1 0 0 0 1 2 0 0 1 1 3 0 1 0 0 4 0 1 1 0 5 1 0 0 0 6 1 0 1 0 7 1 1 0 1 8 1 1 1 0 b a x b 1 0 0 0 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 7 1 1 0 1 8 1 1 1 1 b a x a 6 1 0 1 1 8 1 1 1 1 b a x y 1 0 0 0 1 2 0 0 1 1 7 1 1 0 1 b a x b Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 7 1 1 0 1 Gruppe 3 8 1 1 1 1 b a x a Gruppe 2 6 1 0 1 1 Gruppe 3 8 1 1 1 1 b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 Gruppe 2 7 1 1 0 1 b a x b Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 7 1 1 0 1 Gruppe 3 8 1 1 1 1 1;2 0 0 - 1;3 0 - 0 1;5 - 0 0 3;7 - 1 0 5;7 - 1 0 7;8 1 1 - b a x a Gruppe 2 6 1 0 1 1 Gruppe 3 8 1 1 1 1 6;8 1 - 1 b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 Gruppe 2 7 1 1 0 1 1;2 0 0 - 7 1 1 0 b a x b Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 3 0 1 0 1 5 1 0 0 1 Gruppe 2 7 1 1 0 1 Gruppe 3 8 1 1 1 1 1;2 0 0 - 7;8 1 1 - 1;3 0 - 0 1;5 - 0 0 3;7 - 1 0 5;7 - 1 0 1;2 0 0 - 7;8 1 1 - 1;3 0 - 0 1;5;3;7 - - 0 1;5;5;7 - - 0 b := (not b and not a) or (b and a) or (not b and not x) or (not x) b a x a Gruppe 2 6 1 0 1 1 Gruppe 3 8 1 1 1 1 6;8 1 - 1 a := (b and x) b a x y Gruppe 0 1 0 0 0 1 Gruppe 1 2 0 0 1 1 Gruppe 2 7 1 1 0 1 1;2 0 0 - 7 1 1 0 y := (not b and not a) or (b and a and not x)
0 0 0 0 1 0 1 1 0 0 1 1 0 0 2 0 1 0 0 0 1 3 0 1 1 0 1 1 4 1 0 0 0 0 1 5 1 0 1 0 0 1 6 1 1 0 0 1 0 7 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 2 0 1 0 0 3 0 1 1 0 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 1 7 1 1 1 0 0 0 0 0 1 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 0 0 0 0 1 1 0 0 1 1 7 1 1 1 1 3 0 1 1 1 6 1 1 0 1 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 7 1 1 1 1 0 0 0 0 1 1 0 0 1 1 7 1 1 1 1 0;1 0 0 - 7 1 1 1 3 0 1 1 1 6 1 1 0 1 3 0 1 1 6 1 1 0 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 7 1 1 1 1 Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 Gruppe 3 7 1 1 1 1 0;2 0 - 0 0;4 - 0 0 2;3 0 1 - 4;5 1 0 - 3;7 - 1 1 5;7 1 - 1 3;7 - 1 1 0;4 - 0 0 5;7 1 - 1 0;2 0 - 0 2;3 0 1 - 4;5 1 0 - 0;1 0 0 - 7 1 1 1 c := (not c and not b) or (c and b and a) 3 0 1 1 6 1 1 0 b := (not c and b and a) or (c and b and not a) 3;7 - 1 1 0;4 - 0 0 5;7 1 - 1 0;2 0 - 0 2;3 0 1 - 4;5 1 0 - a := (b and a) or (not b and not a) or (c and a) or (not c and not a) or (not c and b) or (c and not b) c := (not c and not b) or (c and b and a) b := (not c and b and a) or (c and b and not a) a := (b and a) or (not b and not a) or (c and a) or (not c and not a) or (not c and b) or (c and not b)
0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 b a x b a y 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 b a x b a y 0 0 0 0 1 0 0 1 0 0 1 0 0 1 2 0 1 0 0 1 0 3 0 1 1 1 0 0 4 1 0 0 1 0 1 5 1 0 1 1 1 0 6 1 1 0 0 0 0 7 1 1 1 0 1 0 b a x b 0 0 0 0 1 1 0 0 1 0 2 0 1 0 0 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 0 7 1 1 1 0 b a x a 0 0 0 0 0 1 0 0 1 0 2 0 1 0 1 3 0 1 1 0 4 1 0 0 0 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 b a x y 0 0 0 0 0 1 0 0 1 1 2 0 1 0 0 3 0 1 1 0 4 1 0 0 1 5 1 0 1 0 6 1 1 0 0 7 1 1 1 0 b a x b 0 0 0 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 b a x a 2 0 1 0 1 5 1 0 1 1 7 1 1 1 1 b a x y 1 0 0 1 1 4 1 0 0 1 b a x b Gruppe 0 0 0 0 0 1 Gruppe 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 b a x a Gruppe 1 2 0 1 0 1 Gruppe 2 5 1 0 1 1 Gruppe 3 7 1 1 1 1 b a x y Gruppe 1 1 0 0 1 1 4 1 0 0 1 b a x b Gruppe 0 0 0 0 0 1 Gruppe 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 0;4 - 0 0 3 0 1 1 4;5 1 0 - b := (not a and not x) or (not b and a and x) or (b and not a) ---------------------- b a x a Gruppe 1 2 0 1 0 1 Gruppe 2 5 1 0 1 1 Gruppe 3 7 1 1 1 1 2 0 1 0 5;7 1 - 1 a := (not b and a and not x) or (b and x) ---------------------- b a x y Gruppe 1 1 0 0 1 1 4 1 0 0 1 1 0 0 1 1 4 1 0 0 1 y := (not b and not a and x) or (b and not a not x) --------------------- b := (not a and not x) or (not b and a and x) or (b and not a) a := (not b and a and not x) or (b and x) y := (not b and not a and x) or (b and not a not x)
000 0 001 000 1 010 001 0 100 001 1 101 010 0 011 010 1 101
Das Schaltwerk lautet wie folgt: Ein Multiplizierschaltwerk. Bei dem wird 8 * 6 die 6 addiert. Zum Beispiel, indem 8 Mal hintereinander eine Addition von 6 stattfindet. Aber mit einem feinen Unterschied: Zu der 6, die addiert wird, wird jedes Mal eine 1 addiert. Die 6 wird jedes Mal um 1 erh"oht. Das Operationswerk hat zwei Register. Eines f"ur die 8 das andere f"ur die 6. Und zwei addierer. Am Anfang von der 6 zum Beispiel ist ein Multplexer. Vor der 8 auch, da kann am Ende das Ergebnis landen.